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Key Experimental Observations and Design 
Implications;
Helium Transport;
Critical Bubble Models;
Creep Constrained Cavitation & Rupture;
Alloy Design for Helium Management;
Future Research Needs.



Test Temperature EffectsTest Temperature Effects
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De Vries et al
Creep Rupture Time: Can 

be reduced by a factor of 10 for a 
few appm He Nucleation 
Control.

Test Temperature Effects:
Loss of ductility starts at ~500 OC.  
Partial recovery at T> 700 OC

Bubble mobility and 
coalescence.



Strain Rate EffectsStrain Rate Effects
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Most drastic at low strain rates (10-7-10-6 s-1) 
No effect at high strain rates (>1 s-1)  

Slow material transport 
(e.g. diffusion / plasticity).



FerriticsFerritics vsvs AusteniticsAustenitics
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Austenitics ductility decreases significantly with strain rate
Ferritics are more resistant to helium embrittlement

Cavity growth is constrained in Ferritics.
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InIn--pile pile vsvs prepre--implantedimplanted
Shroeder’s
Data

In-pile/in-beam shows a 
milder stress dependence of 
rupture time 

Pre-implanted shows 

Complex role of 
microstructure.

Irradiation Creep (Odette)

tR ≈
−σ ( .. )2 3

tR ≈
−σ ( .. )8 9



Effects of He on VanadiumEffects of He on Vanadium
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He embrittlement 
in V alloys 
becomes evident in 
tensile tests for:

T > 700°C
Che > 100 appm
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Helium TransportHelium Transport
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1) Essentially insoluble in metals, extrinsic interstitial migration 
energy is very low (0.14 eV in Ni by Philips & Sonnenberg);

2) Transport to grain boundaries is highly-dependent on the 
microstructure;

3) Strong coupling between matrix bubble nucleation/growth and 
helium flow to grain boundaries;

4) Complex possibilities:
1) Thermal trapping/ detrapping in vacancies and vacancy clusters;
2) Replacement of substitutional helium by SIAs;
3) Extrinsic interstitial diffusion;
4) Dynamic displacement by cascades;
5) Pipe diffusion along dislocation cores;
6) Stress-induced transport by dislocation motion;
7) Bubble thermal & stress gradient transport.



Dominant Mechanisms*Dominant Mechanisms*
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1) Radiation Displacement Regime:

1) SIA-Replacement Regime:

2) Thermal De-trapping Regime:
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*N. M. Ghoniem, S. Sharafat, J. Williams, and L. K. Mansur, "The Theory of Helium Transport and Clustering in Materials Under 
Irradiation", J. Nucl. Mater., 117:96-105, 1983
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Effective He DiffusionEffective He Diffusion
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Helium Transport in the Helium Transport in the 
Radiation FieldRadiation Field
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Dynamic (secondary) Dynamic (secondary) 
Nucleation.  Is it real?Nucleation.  Is it real?
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Creep Rupture ModelsCreep Rupture Models
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Critical Bubble ConceptCritical Bubble Concept
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Helium Embrittlement Models Helium Embrittlement Models --11
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• In-situ creep-rupture: Nabarro-Herring flow of vacancies from PFZ plus 
irradiation creep (B) leads to simple scaling laws:

@ low σ: tr ≈ I/[(He/dpaB)1/2σ2] and εr ≈ I√B/[(He/dpaB)1/2σ2]

Fit I at 100 MPa
Predicted ImplicationsOdette 1984



Helium Embrittlement Models Helium Embrittlement Models --22
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2-D model of cylinders at 
TPJs; 

GB sliding is represented by 
dislocation pileups;

Modified Griffith criterion for 
gas-filled TPJ cracks.

Instability is obtained by 
minimization of energy w/t 
crack length and gas pressure.

Does not explain slow creep 
rupture.

Ryazanov-Trinkaus, 96



Helium Embrittlement Models Helium Embrittlement Models --33

Alhajji-Ghoniem, 85
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Helium Embrittlement Models Helium Embrittlement Models --33

Alhajji-Ghoniem, 85
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Helium Embrittlement Models Helium Embrittlement Models --33
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AusteniticAustenitic MartensiticMartensitic



Alloy Design for Helium Alloy Design for Helium 
ManagementManagement
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1. Limit grain boundary dislocation climb by 
increasing the precipitate density at grain 
boundaries. 

2. Reduce thermal creep rates. This limits bubble 
growth by creep deformation and reduces the 
vacancy supply by dislocations entering the 
boundary.

3. Increase the bubble surface energy (segregation?) 
to delay bubble growth instability.

4. Increase the matrix precipitate density to reduce 
helium flux to grain boundary. 

5. Increase the matrix bubble density to reduce the 
sink strength of grain boundaries. 
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Microstructure Design Improves Resistance to Microstructure Design Improves Resistance to 
He EmbrittlementHe Embrittlement
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Titanium additions to austenitic 
alloys improves creep rupture by 
capture of MC-type precipitates of 
(implanted?) helium.



Future Research NeedsFuture Research Needs
11-- AtomisticAtomistic
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1. KMC & MD of helium transport.  Rate theory conclusions firm?

2. Ab-initio/ MD of He-V cluster binding energies;

3. Ab-initio/ MD of He-precipitate (MC-type) binding energies;

4. Cascade-bubble interaction (helium re-solution & re-
nucleation);

5. KMC of bubble migration & coalescence  (matrix, GBs, 
dislocations?)

6. Relationship between GB structure and He bubble density/ size;

7. KMC of GB bubble/ void transition & instability;

8. Dislocation-GB interaction in BCC vs FCC & vacancy source.



Future Research NeedsFuture Research Needs
22-- MicromechanicsMicromechanics

1. 3-D Micro-mechanics/ FEM (e.g. ABACUS) Models of Grain 
Boundary Sliding and Stress Evolution;

2. DD simulations of Dislocation-GB interaction & Cross-slip for 
FCC and BCC;

3. Coupled DD/FEM (or mesh-free) for matrix creep/ GB evolution 
and sliding of polycrystals.

4. Eshelby-Based KMC for He flow to GBs;
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Future Research NeedsFuture Research Needs
3 3 -- ExperimentalExperimental
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Well-characterized, model-driven, single-variable 
experiments to resolve remaining He effects questions;

Bi-crystals: Helium implanted and loaded?

Helium desorption of (1) samples with precipitates; (2) 
samples with different grain size &/or structure.

Proposed US/Japan collaborative experiments with possible 
He effects studies

DOE/JAERI (F82H and model ferritic alloys; He effects 
study would concentrate on 300 & 400˚C tensile, fracture 
behavior)

DOE/MEXT Jupiter-II (V alloys; experimental matrix for 
1st irradiation to be decided this fall)



Additional SlidesAdditional Slides
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Modeling Results and ObservationsModeling Results and Observations
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Precipitates at GB’s are necessary for cavitation in the 
absence of irradiation.
tR is controlled cavity growth (nucleation is fast).
Irradiation results in a significant enhancement of GB 
cavity density.
Higher helium implantation rates result in a higher 
grain boundary bubble density.
The grain boundary bubble density reaches a steady 
state at large amounts if injected helium (>10 appm).
Out of pile creep tests do not accurately describe the in-
pile creep behavior.
The resistance of martensitics to helium embrittlment 
is a result of vacancy source control.



LowLow--temperature Helium temperature Helium 
EmbrittlementEmbrittlement

Lindau, et al., 1999
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Effects are masked by data scatter (related to initial Effects are masked by data scatter (related to initial 
microstructure) and a number of experimental uncertaintiesmicrostructure) and a number of experimental uncertainties.
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Design ImplicationsDesign Implications

Time-dependent Allowable 
Stress (St): Lowest value of 

(a) 2/3 of minimum stress 
to cause creep rupture in 
time t

(b) 80% of minimum stress 
to cause tertiary creep in 
time t

(c) Minimum stress to 
produce 1% strain in time t.Extension of Standard ASME 

rules may be problematic
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