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Ecm Presentation Outline

> IFE Features & Radiation
Environment;

» Statement of Objectives;

» Key Science and Technology
Challenges;

» Framework and Integration Logic;
JApproach;
dOn-going Activities;
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Neutrons

Gamma-rays

X-rays (J/cm?)
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Chamber Radiation
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Optics stand-
off
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Eclﬁ STATEMENT OF OBJECTIVES-1

» Development of Material Systems and
Components for High Average Power
Density Laser Optics;

0 Develop both reflective and transmissive optics;

U Investigate effects of laser, X-ray, neutron and
ion/debris;

O Critical issue for transmissive optics : degradation
of transmissivity as a result of color center
formation;

U Considered materials : Si0,, CaF, MgF, and Al,O,;
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STATEMENT OF OBJECTIVES-2

O Critical issue for reflective optics: degradation of the
Laser-Induced Damage Threshold (LIDT) by surface
deformation mechanisms;

U Considered material systems: FCC metals (e.g. Cu &
Al), BCC metals (e.g. Mo & W), SiC, Layered structures
and innovative design concepts ;

L Design objective:

= Minimize (or compensate for) gross structural
deformation by gravity, thermal and mechanical
loads;

= Control microscopic surface deformation caused by
material defects.
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STATEMENT OF OBJECTIVES-3

» Development of Reliable Chamber
Structures and Components for the
IFE Dry-wall Concept;

U Key Issues:
= Pulsed neutron damage;
= Intense X-ray effects;

= Effects of repetitive thermomechanical shock
Loading.

U Material Systems : engineered high-temperature
composites, with variants of C/C, C/SiC, SiC/SiC; (2)
Refractory alloys (W & Mo); ODS Ferritics; Layered

structures.




[;;{; FRAMEWORK & INTEGRATION Al

R

LOGIC

d “Cradle-to-Grave” approach;

d Balanced Mix between:

= Fundamental understanding of mechanisms;
= Integration of material and design concepts;
= Data-base generation for IRE and ETF.

d Experiments:

7

¢ Collection of a database;

7

% Motivated by theoretical ideas and concepts;
d Theory & Modeling:
* Validated by experiments within the program;

s Advanced models of structural performance
and reliability.
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Ec”" The SIX Research Thrust Areas

IRE & ETF Materials & Design Data Base

IRE & ETF Optical Systems Materials Evaluation

Development and Testing of FW and Structural
Materials

Unique IFE Materials Science for FW & Structures

Surface Modification Science & Technology

Materials Impact on Safety, Economics & the
Environment
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SOMBRERO Basics

Geometry:

Cylinder with two cones @ the
ends;

= Mono-Axial Geometry;
= Panel Shape?

(manufacturing + maintenance
+ analysis problems);

= Panel locking?
(NO weldings, threaded joints);
Cooling:
Flowing from the top to the
bottom;
— Leakage prevention?

Maodel of a DPSSL-modified
SOMBRERO target building includes
final optics and neutron dumps
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rrom somBrero to UCLA’S Design: Spherical Geometr

2"d Frequency:
204=80 Faces;
All Equal Faces

3" Frequency:
209=180 Faces;
2 different Faces

Icosahedron:
20 Faces

A Frequency:
2016=320 Faces;
5 different Faces
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Mechanical Design-|




EE!: UCLA’s Design of IFE Chamber m

—

O The explosion
creates
pressure waves
and thermal
gradients with
spherical
geometry.

power is
2000MW. 1




E;ﬁ Design of IFE Structural Materials M
@

IS Challenging

pressurepanel-pressurepanel3 | Static Modal Stress

O Stress analysis
on the chamber
structure is
performed using
FEM techniques.

L
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EEII; UCLA’s Design of IFE Chamber M

enter trough pipes
from outside the
chamber
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Thermomechanical Loading
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Fiz. 5. Schematic of (a) the first wall/blanket configuration
and (b} the plate model of the PROMETHEUS first wall,
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E;ﬁ FW stress depends on geometry

and temperature/ pressure ratio
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Figure 8. Combined compressive stress vs. time.
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Modeling Approaches

> Engineering (S-N-P):

> Linear Life-fraction rule: 2& 51
» Non-linear Damage: n_i=1 N
22t
Y B —
> Fracture Mechanics (Paris-Erdogan Law) N =Cen
AK = Kmax o Kmin
d

a n
d_n = Cpe (AK)

»Micromechanics: (Dislocation Dynamics &

Micro-crack mechanics.
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uclA Paris Law
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FIGURE 8.22. Crack growth rate as a function of stress-intensity range for Ni-Mo-V
steel. (From ref. 66, copyright Society for Experimental Stress Analysis, 1971;
reprinted with permission.)
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I 1 ! 1
90— T /1 Distribution from constant stress
level testing method
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FIGURE 10.2. Fatigue data for constant stress level testing program plotted ot FIGURE 10.6. S-N-P curves determined by using constant stress level method in
standard S-N plot. (After ref. 1) finite life range and survival method in infinite life range.

(2) da/dn (3) Threshold Fracture toughness
(bulk & interface)
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s L ASER OPTICS

 Eliminates the use of a
crystal for the fusion
chamber

e Easier fabrication
methods

e Cost effectiveness
o Versatility
Longer lifetime
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Experimental Data for Polished Cu

Intensity

>
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r
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Data for Multi Pulse Damage m

18—-
16—-
14—_
12—_

10

Damage Thresholds (J/cm?)

2 x> DR

Cu
Al

Ag
Mo

* >0 n

| g |
10 10°

|
10°

Number of shots

24



SURFACE DEFORMATION

MECHANISMS
e Single Shot Effects on LIDT:

e Laser Heating Generates Point Defects

 Coupling Between Diffusion and Elastic Fields
Lead to Permanent Deformation

* Progressive Damage in Multiple Shots

e Thermoelastic Stress Cycles Shear Atomic
Planes Relative to one Another (Slip by
Dislocations)

e Extrusions & Intrusions are Formed when
Dislocations Emerge to the Surface
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SINGLE-SHOT EXPERIMENTS &

MODELING

Focused Laser-induced Uniform Laser-induced
Surface Deformation Surface Deformation

|

Computer Simulation Experiment

Computer Simulation

Focused laser-induced surface deformation (Lauzeral, Walgraef (Walgraef, Ghoniem & Lauzeral, Phys. Rev.

& Ghoniem, Phys. Rev. Lett. 79, 14 (1997) 2706) B, 56, 23, (1997) 1536)
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Ecw Front view of basic unit

 Top layer- e-Beam Al

e Second layer-CVD-SIC

e Third Layer: SiC
Foam

e Fourth layer-
composite face sheet;

e Fifth Layer: SiC
Foam;

 Back Face: Web-
reinforced Structure.
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Assembly of entire structure
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Ec“‘ Thermal loads and stresses m
W
e Cooling system needs to Q:]'Oc—n?,
remove 740 W per mirror
o Mass flow rate of coolant
.018 Kg/s
» Working temperatures of the
coolant 290K to 300k

» Water as possible coolant

29
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Unique IFE Environment

I - -
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TOKAMAK TYPICAL LASER AND EBR-II
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DEVICES

Fig. 1. Instantaneous displacement damage rates in deute-
rium-tritium/controlled thermonuclear reactor (D-T/
CTR) first walls and simulation facilities.

30



E;ﬁ Integration of Materials and

Chamber Design

500
Materials-by-Design Knobs: as0)-
(1) Alloying and Composition. wool. ZE‘EE}Z‘T :TEEL
(2) Multi-function Materials (e.g. Layering) asol.
(3) Composite Architectures.
@ 300 NO GAS
200
Chamber Design Knobs: sol
(1) Size and Shape. ol
(2) FW Constraints. |
(3) Coolant/ FW system. o ﬂ/l‘n‘
(4) Buffer Gas Pressure & Evacuation. 0 107 A T = o3

TIME AFTER X-RAY ARRIVAL, s

(5) Temperature & Required Efficiency.
Fig. 10. Effect of a 0.5-Torr neon buffer gas on the instan-
taneous displacement damage rates at x = 1 um

(Ref. 19).
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A 40 dpa/h, SCANNED
700~ O 240 dpa/h, SCANNED -

<> 240 dpa/h, DEFOCUSED
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200— —

100 —

Unique Structural Phenomena -
Void Swelling Experiment

5 | | | | |

0 300 400 500 600 700
IRRADIATION TEMPERATURE, °C

Fig. 13. Experimental results of self-ion irradiated nickel for
steady defocused and scanned beams (Ref. 39).

8/7/2003

|_SPECIMEN
100 Hz‘ -~ BEAM
|, ~SCANNING
PATTERN
10 kHz
(a)
50 PULSES

x| - m[mL !IMIIIIIIIIHIHIIH -

TIME  25X103s

ION I . ' e
FLUX
- —] }—285x10%5s

TIME
(b)

Fig. 14. Time structure of the ion beam in the NRL experi-
ment (Ref. 39): (a) idealized scanning pattern and
(b) idealized ion flux.
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Unique Structural Phenomena -

Void Swelling Theory

STEADY—IRRADIATION

INCREASE IN VOID RADIUS (AR) x 10, am

673 773 873 973
TEMPERATURE (K)

Fig. (3): The increase in the average void radius as a function

of irradiation temperature for various pulsing frequen-

. _ - -7 -
cies. RC(O) = 10 nm, Ton = 10" “sec, Z; = 1.08, and

average dose rate = 10”° dpa/s.
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s Conclusions

J Very challenging scientific and technical issues for
IFE materials require a dedicated, self-consistent
and integrated R&D approach.

J Augmentation and focusing of on-going activities
have been recommended;

J A detailed R&D plan has been worked-out, with
many participation opportunities from the
community.
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