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Large, uniform composites (mech. properties development and round robin testing)

High      Temperature Thermal Conductivity CVI Composite (SiC and graphite fibers)

Evaluation of NITE composite

Determine high temperature corrosion of SiC in LiPb and water vapor

Crack extension in water vapor containing environment 

Continue surface coatings (glassy, ductile and refractory metals)

Begin generation of comprehensive data-set on 2D CVI SiC/SiC

Joining with preceramic polymers

Determine design space for electrical resistivity of SiC composite

Mapping of swelling and microstructure of SiC at high T

Constitutive modeling of composite fracture under irradiation

Extend irradiation effects database on SiC and SiC/SiC to higher dose

Thermal conductivity modeling and development of practical algorithm
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Forced-Flow, Thermal-Gradient CVI 
Was Developed to Reduce Processing Time
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Large F-CVI Furnace and Fixtures

10cm



SiC/SiC Composites fabricated by F-CVI

300 mm



Distribution of Porosity in Composite 1266 (early part)
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Improvement of Scatter of  F/M Interphase Thickness
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Effect of Fiber Volume Fraction on Porosity
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Composites fabricated by F-CVI 
and machined specimens (75mm diameter)

Top view Cross section 1cm



Effect of Fiber Orientation on Fracture Surface

[0º/90º][-30º/0º/30º]
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· Short Fiber pull-outs were observed in 0º bundles in both materials

· Individual fiber pull-outs could not be observed in oriented bundles

Bundle fracture was characteristic in oriented fiber bundles

Different fracture mode (tension, shear)



Porosity dependence of Elastic Modulus
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Dependence of Porosity on Tensile Properties
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· Tensile strength (UTS) was nearly independent of porosity

· Proportional Limit Stress (PLS) was reduced with increased porosity



Dependence of Carbon Interphase Thickness
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· Dependence of carbon interphase thickness on UTS and PLS was small 



Engineered High Thermal Conductivity, low T-3 retention  SiC/G Composite

• Matrix : CVI SiC , no interphase
•  Fibers : Z-direction either Amoco P55 

or Thornel K-1100  fiber
X-Y direction Amoco P-55 fiber.  
Total Volume Fraction 44%.

Fiber K-1100  P-55  Nicalon
Type-S

Kth (W/m-K@RT) ~950        120           15
Diameter (micron) 10          10           13
Tensile Strength (GPa)     3.1         1.9           2.6
Tensile Modulus (GPa)    965        379           420
Density (g/cc) 2.2         2.0           3.2

• Architecture : 
Unbalanced 1-1-6 weave.

High TC

P55 fiber K1100 fiber
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Advanced SiC/SiC by LPS/NITE Process

1780C/20MPa

10um

Lab-scale materials demonstrated:
Promising mechanical/fracture properties
High thermal conductivity
Hermeticity / helium-tightness

Industrial production:
Demonstrated complex shaping and thin-
wall/thick brick production
Licensed medium-scale production in 
preparation

NITE: NanoNITE: Nano--Infiltration and Transient Eutectic Phase Process Infiltration and Transient Eutectic Phase Process 
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Determine high temperature corrosion of SiC in LiPb and water vapor

Crack extension in water vapor containing environment 

Continue surface coatings (glassy, ductile and refractory metals)

Begin generation of comprehensive data-set on 2D CVI SiC/SiC

Joining with preceramic polymers

Determine design space for electrical resistivity of SiC composite



SiC/SiC: Chemical Compatibility

• Pb-17Li coolant
- Reaction: 2 SiC + 2 Li  = Li2 C2 + 2 Si
- Fenici: 800 C/1500 h: CVI SiC/SiC stable
- Terai: 300-500 C/ 666 h: SiC stable

• Li: SiC very unstable
• Helium + impurity O2

- SiC forms a protective SiO2 layer.
- Carbon interface reacts with O2 to reduce strength, increase da/dt, creep
- 0.1 ppm O2 should lead to 30 yr life, model calculations.
- Transmutation of Li ceramic breeding material will release O2 that will react 

with T to form T2O: H2O reacts with SiC to form SiOH (g), significant 
issue for turbine applications but no information on lower 
concentrations of H2O.

• On-going work: da/dt in Ar+H2O at 800 to 1100 C, Type S SiC/SiC composite



SiC/SiC: Coatings

• Candidate materials
- Ductile metals such as V
- Glasses that can flow to relax stresses
- SiC seal coat
- Advanced composite coatings: Ti3SiC2 + SiC, thermal fatigue

• Status
- European work with glass coatings
- SiC: not likely to work because it will microcrack

• On-going work:
- Proposal to evaluate ductile metal coatings: in situ creep tube will 
provide coating, irradiation creep and burst strength data.



Specifications: Argon plasma (up to 1MW)
Pulse length : 10 ms (no shuttering)
Rep Rate : 5-10 Hz
Maximum heat flux at maximum area : 5 MW/m2 at 2.5 x 35 cm
Maximum heat flux attainable :12. 5 MW/m2 at 2.5 x 20 cm

SiC

10 ms, 5 MW/m2 bursts

QuickTime™ and a
 decompressor

are needed to see this picture.

60 ms

5 MW/m2

Infrared Rapid Melt Processing and Thermal Shock
--> Rapid melting of surface refractory, leaving substrate cool



Example : Infrared Processed Hexaloy SA / W powder

W deposition + 
annealing+ W 
powder

5µm W deposition +  
W powderW  powder

Process variable included:  W powder alone
Deposition of thin layer of tungsten + powder
Deposition of W and annealing to bond thin interface

TEM of interface revealed essentially no difference in processes, but the 
interfaces were very clean 



Crack formation

SiC

W

No preheating Preheating

Initial processing resulted in cracking in tungsten which propagated across 
interface into substrate.  This would cause spalling during fatigue loading.  This 
has been controlled by preheating of the substrate prior to Infrared Processing.



SiC/SiC: Joining

• Preceramic polymer: allylhydridopolysilane (aHPCS) + SiC powder
- 85 MPa average 4-point bend strength, RT

• ARCJointT: NASA developed, reaction formed SiC + other phases, applied in air 
with a torch- field application
- 134 MPa average 4-point bend strength, RT
- 247 MPa after anneal at 1100 C in air

• High-temperature brazes: Si-22%Ti: eutectic
- 60 MPa shear strength, RT

• Displacement reaction composite: TixSiyC + SiC
- 187 MPa 4-point bend strength, RT

• On-going work: PNNL working with aHPCS + SiC powder, preparation for 
irradiation in HFIR.



Electrical Resistivity

•  The electrical resististivity of SiC is assumed > 100 ohm-m for MHD pressure loss 
considerations.  Currently, non-irradiated and neutron irradiated composites are being 
evaluated (different fibers, matrices and interfaces) to map design space for electrical 
resistivity.  Preliminary data reveals a problem with low resistivity.

Comprehensive Data Set

•  Design community is advocating a comprehensive handbook of SiC/SiC properties.  We 
are now in a position to fabricate materials for round-robin testing and relevant property 
information.  This talk is being fed by mechanical property and materials development areas.
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Mapping of swelling and microstructure of SiC at high T

Constitutive modeling of composite fracture under irradiation

Extend irradiation effects database on SiC and SiC/SiC to higher dose

Thermal conductivity modeling and development of practical algorithm



Irradiation Induced Strain and Amorphization
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• Ceramics undergo swelling due 
to radiation-induced interstitial strain

•  SiC swelling regimes:
Amorphization (T< 150°C)
Point Defect Swelling (<1000°C)
Void Swelling (?)

•  Upper temperature swelling is
being mapped by ion beams (Kyoto) 
and will be mapped (600-1500°C)
using HFIR irradiation (METS.)



Radiation-hard SiC composites
Nicalon™

Fiber Type

C/Si

Atomic

Ratio

Oxygen

Content

(wt/%)

Tensile

Strength

(GPa)

Tensile

Modulus

(GPa)

Density

(g/cm3)

Diameter

(µm)

Ceramic Grade 1.31 11.7 3.0 220 2.97 2.55

Hi 1.39 0.5 2.8 270 7.77 2.74

Type-S 1.05 0.8 2.6 410 24.1 3.1



0.0

0.50

1.0

1.5

2.0

1 10 100

Snead this work
Price 82
Price 77 
Dienst 92

N
or

m
al

iz
ed

 S
tr

en
gt

h

Dose (dpa)

CVD Silicon Carbide

0



0.0

0.50

1.0

1.5

0.1 1 10 100

Matheney 79 NC-430
Matthews 73 NC-430
Iseki 90 RB
Iseki 90 PLS
Iseki 90 HP
Price 82 NC-430
Price 82 Carborundum
Dienst 91 0.75% B
Dienst 91 1.9%B
Corelli 83 NC430

N
or

m
al

iz
ed

 S
tr

en
gt

h

Dose (dpa)

Hot Pressed and Sintered SiC forms

0



FUN (Fusion Unidirectional) Rabbit Program

• Study of composite systems under irradiation through constitutive modeling 
of ideal unidirectional systems.

5 cm

Unidirectional SiC/SiC tensile

Trans-laminar
shear specimen

• Fibers : Nicalon Type-S, Tyranno SA, AVCO SCS-0
• Interphases : Carbon, Multilayer SiC, Pseudo Porous SiC
• Matrix : ICVI SiC
• Current Irradiation : HFIR, 200-800°C, 1 to 10 dpa, 26 capsules. ORNL/JUPITER



Background
• The strength of most ceramic fibers are distributed 

according to a two-parameter Weibull distribution.

Question : What is the effect of 
Weibull modulus of fiber and its 
relation to fracture in the 
composite?

Model : Assuming a bundle 
containing No fibers with 
Weibull modulus m, and 
characteristic strength so , to a 
constant displacement rate.
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The distribution of fiber strengths is responsible for the “graceful” mode of 
failure of CFCCs.  Therefore, we want strong fibers with low Weibull modulus!



Reproducibility of Tensile Behavior
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Micromechanical model of stress-rupture incorporating kinetics of oxidation (fiber, 
interphase), fracture mechanics and stochastic nature of fiber strength

σzf

T
2τ/r

1

z
ζ lc/2

E. Lara-Curzio (2000)
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Thermal Defect Resistance for Predicting Conductivity

• Maximum thermal conductivity can be estimated for any material based on
1/Krd measured from an “ideal” material.

•  Maximum irradiated thermal conductivity for SiC is estimated to be ~ 10 W/m-K
at 500°C, ~37 W/m-K at 700°C.

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200

K
 (W

/m
-K

)

Temperature (C)

Saturation Conductivity for Morton CVD SiC 

unirradiated
high conductivity

Kirr(T) : W/m-K1/Krd sat.(m-K/W)
13.07240-270°C
10.09490-510°C
37.018690-720°C

1/K
rd

 model

1
Kirr (T)

=
1

Kunirr (T)
+

1
K rd(T)

For composites, add
resistance of cracks and
interfaces

14J
METS
Others



Physics of phonon transport & scattering are being 
investigated in neutron-irradiated ceramics

(ORNL and Merrimack College )

K (T )[ ]−1
=

1
Ku (T )

+
1

Kgb(T )
+

1
Kd 0

+
1

Krd

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

Thermal resistance of different phonon scattering 
centers can be simply added if their characteristic 
phonon interaction frequencies are well-separated 
from one another

Thermal resistance due to radiation-induced defects 
(vacancies, dislocation loops, etc.) is proportional to 
their concentration
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SiC/SiC: Thermal Conductivity

• Status:
- Models developed that accurately predict behavior
- Latest SiC/SiC with Type S: 26 W/m-K, highest to date for CVI matl.
- Efforts to engineer higher thermal conductivity in progress: 

34 W/m-K achieved.
- Irradiation will reduce value to 1/2 at 1000 C, goal is 20 W/m-K.

• On-going work:
- Continue to measure thermal conductivity of advanced materials and 

check against models.

• Issues:  effect of transmutants
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