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Outline

Brief overview of multiscale deformation phenomena
in 1rradiated bee alloys with flow localization and
severe uniform strain loss

A continuum model for uniform strain loss and
connection to true-stress strain behavior

A continuum model of meso-scale localization
mechanics

Some ‘fundamental’ implications to experiment



Objective

e Understand, model the multiscale physics of deformation
of bce alloys and effects of irradiation-flow localization.

Engineering

stress, S
A I‘
¥ *
-

Macroscopic connection
to to microscale localized
flow - coarse slip to high
strain flow channels?

\

Mechanisms
- source hardening
- defect free channels
L - twinning
I i t— , - retarded cross slip.

\

v irradiated

I
I
I
I
I
I

Engineering strain, e



Decoupling Localization Effects

e [solate and properly integrate multiscale parts -
what controls the observables?
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Flow Localization

Flow localization 1s common - occurs in various
alloy systems and may arise from a very wide
variety reasons (adiabatic heating, precipitate
cutting, ordering super-dislocations, ...) and 1n a
number of different forms

Key 1ssue metalworking & some alloys like Al-Li1

The various manifestations of localization are often
very sensitive to a number of extrinsic factors
related to size and shape, loading conditions, load-
train compliance and displacement constraints,....

Low uniform strains occur without micro-
localization (channels) and vice versa



Tensile Necking Instability

* Necking controls ¢ in tensile engineering s(e) curves -
strongly influenced by extrinsic geometric factors as

well as by the Intrinsic true stress strain o(g)
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FE Modeling Tensile Test

« Model pre and post necking s(e) - o(¢) relation
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Strain Softening

* Modest true strain softening greatly reduces engineering
necking strain: 6 = o, - Ce (C =1000 to 4000)

1000 [

800

600

400

200

e

[ a
i ’.,“ C=0
4000 2000
C=1000 MPa
Gﬂ=Gy—CSP
Gy:800 MPa
0.02 0.04 0.06 0.08 0.1

1000 T
800 [
600 |
400 |

200 |

. C=1000 MPa

Y
.

Sene

LI




Irradiated o(¢g)

* The o(e) “fit’ to typical s(e)
curve shows irradiation

hardening persists to high €
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[rradiated o(¢g) - Persistent Ac._(¢)
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Modeling Tensile Test

« A great deal of other detailed information 1s
available from FE simulations -- large geometry
change, stress, stress-state, strain distributions --
compare to experiment.
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3-D Tensile Neck Evolution

« Combine confocal and optical microscopy for in-situ
tensile test imaging to compare with FEA results - also
interrupted/ post-test examination
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Summary - FE Tensile Test Modeling

* The FEM + J, flow theory appears adequate modeling
macroscopic deformation in alloys that flow localize

* Even with severe loss of ¢, and micro-localization global
irradiation and some strain hardening persist

e Understand the continuum solid micromechanics of
heterogeneous deformation - obey equilibrium/
compatibility and basic plasticity laws -- internal
redistribution of

[~ stress (from ‘weak’ to ‘strong’regions) t
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FE o(¢) Model With Localization

* Embed localized strain softening shear band (SB) regions
in strain hardening matrix (M) - many variables:

- SB strain softening (C, other)

Plane Strain

- matrix strain hardening (k, n)

- SB volume fraction ()

SB

- SB geometry (0)
- plasticity laws
- damage

- mirror or periodic
unit cell boundary
condition M
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Examples of Results - T
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Internal Strain Distributions

* High strains in the SB with maximum softening
but SB deformations accommodated by lower
matrix strain with strain hardening

— very high ¢




Internal Strain Distributions

Effective Plastic Strain at 5% average Strain (%)



Implications What To Look For

Irradiated o(€) consistent with almost interconnected
high e-highly softened 45° SB network

SB deformation accommodated by matrix € with =
normal e-hardening rate

Localization high € between between SB and
intersections of these regions

Key observables would result -- deformation patterns,
varied dislocation structures -

soft and hard regions,....
Experiment-modeling @
interplay 1s critical to
fundamental understanding




Summary and Conclusions

* Irradiation induced severe loss of g, 1s an inherently
compex multiscale phenomena and not only (or
even) related to localization - meso-macroscale
deformation mechanics 1s critical.

* Considerable progress in understanding mechanics
has major implications to both fundamental science-
based uderstanding and practical applications of
consitutive and structural deformation models.
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