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Outline

• Brief overview of multiscale deformation phenomena 
in irradiated bcc alloys with flow localization and 
severe uniform strain loss

• A continuum model for uniform strain loss and 
connection to true-stress strain behavior

• A continuum model of meso-scale localization 
mechanics

• Some ‘fundamental’ implications to experiment



Objective
• Understand, model the multiscale physics of deformation 

of bcc alloys and effects of irradiation-flow localization.
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Decoupling Localization Effects
• Isolate and properly integrate multiscale parts -

what controls the observables?
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Flow Localization
• Flow localization is common - occurs in various 

alloy systems and may arise from a very wide 
variety reasons (adiabatic heating, precipitate 
cutting, ordering super-dislocations, ...) and in a 
number of different forms

• Key issue metalworking & some alloys like Al-Li
• The various manifestations of localization are often 

very sensitive to a number of  extrinsic factors 
related to size and shape, loading conditions, load-
train compliance and  displacement constraints,….

• Low uniform strains occur without micro-
localization (channels) and vice versa



Tensile Necking Instability
• Necking controls εu in tensile engineering s(e) curves -

strongly influenced by extrinsic geometric factors as 
well as by the intrinsic true stress strain σ(ε)

Analytic Model
σ(ε) = σy + κ(ε/εy)n

εu
n-1 - [εy

nσy/κ +εu
n]/n = 0

Increased σy and 
decreased n both
lead to reduced εu
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FE Modeling Tensile Test

ABAQUS - 1320 8-noded
brick elements

small defect - insensitive to detail
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Strain Softening

• Modest true strain softening greatly reduces engineering 
necking strain: σ = σy - Cε (C =1000 to 4000)
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Irradiated σ(ε) 
• The σ(ε) ‘fit’ to typical s(e) 

curve shows irradiation 
hardening persists to high ε
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Irradiated σ(ε) - Persistent ∆σirr(ε) 
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Modeling Tensile Test
• A great deal of other detailed information is 

available from FE simulations -- large geometry 
change, stress, stress-state, strain distributions --
compare to experiment.
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3-D Tensile Neck Evolution
• Combine confocal and optical microscopy for in-situ

tensile test imaging to compare with FEA results - also 
interrupted/ post-test examination
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Summary - FE Tensile Test Modeling
• The FEM + J2 flow theory appears adequate modeling 

macroscopic deformation in alloys that flow localize
• Even with severe loss of εu and micro-localization global 

irradiation and some strain hardening persist
• Understand the continuum solid micromechanics of 

heterogeneous deformation - obey equilibrium/ 
compatibility and basic plasticity laws -- internal 
redistribution of

- stress (from ‘weak’ to ‘strong’regions)
- stress-state (uniaxial to triaxial)

σeffw = 3σyw
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S
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FE σ(ε) Model With Localization
• Embed localized strain softening shear band (SB) regions 

in strain hardening matrix (M) - many variables:
- SB strain softening (C, other)
- matrix strain hardening (k, n)
- SB volume fraction (fsb)
- SB geometry (θ)
- plasticity laws
- damage
- mirror or periodic 
unit cell boundary 
condition

Plane Strain

σ(ε)??

QuickTime™ and a
TIFF decompressor

are needed to see this picture.

QuickTime™ and a
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Examples of Results - fsb

0

200

400

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1 1.2
matp/matd

σ 
(M

Pa
)

εp

MAT-1

MAT-2

MAT-3

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1

σ 
(M

Pa
)

εp

C=500 MPa

σ=σY-Cεp

C=2000 MPa

C=1000 MPa

Unirr.
σy = 500
C = 1000
θ = 45
Mirror

0

200

400

600

800

1 103

0 0.02 0.04 0.06 0.08 0.1 0.12

σ 22
 (M

Pa
)

ε22

Homogenous

Hole

Particle, n=0

Particle, softening

σY=500 MPa, n=0.1, f=5 %

0

200

400

600

800

1 103

0 0.02 0.04 0.06 0.08 0.1 0.12

σ 22
 (M

Pa
)

ε22

Homogenous

Hole

SB n=0

SB softening

σY=500 MPa, n=0.1, f=2.5 %

fsb = 0.025

fsb = 0.050

θ

Matrix strain hardening

SB-strain softening

Periodic b. c. 
similar

Unirr.
Irr. + 50% SH

Irr. + 100% SH

Effect at fsb = 0.01, small

σ S
B

σ M

εSB

εM

ε

ε

σ
σ



Examples of Results - C and θ
Unirr, fsb - 0.025, σy = 500 MPa
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Irradiated σ(ε)
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Internal Strain Distributions
• High strains in the SB with maximum softening 

but SB deformations accommodated by lower 
matrix strain with strain hardening

very high ε



Internal Strain Distributions
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Implications _ What To Look For
• Irradiated σ(ε) consistent with almost interconnected 

high ε-highly softened 45° SB network
• SB deformation accommodated by matrix ε with ≈ 

normal ε-hardening rate 
• Localization high ε between between SB and 

intersections of these regions
• Key observables would result -- deformation patterns, 

varied dislocation structures -
soft and hard regions,….

• Experiment-modeling 
interplay is critical to 
fundamental understanding



Summary and Conclusions
• Irradiation induced severe loss of εu is an inherently 

compex multiscale phenomena and not only (or 
even) related to localization - meso-macroscale 
deformation mechanics is critical.

• Considerable progress in understanding mechanics 
has major implications to both fundamental science-
based uderstanding and practical applications of 
consitutive and structural deformation models.
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