
Stochastic Dislocation Dynamics: Stochastic Dislocation Dynamics: 

DislocationDislocation--Defect InteractionDefect Interaction

Defects of InterestDefects of Interest
w SFTs 
w Frank/ Perfect Loops 
w Glissile dislocation loops
w He void

v WSU-CMM: Zbib, Hiratani
v LLNL: Diaz de la Rubia, Bulatov, Wirth



Elements Involved Elements Involved 

2.Sample Conditions2.Sample Conditions

w Creep
w Quasi-static Strain Rate
w High Strain Rate
w ρdefect = 1022~1024/m3

w T = RT ~ 0.5 Tmelt

1.Defects & Materials1.Defects & Materials

3.Simulation/ Coding3.Simulation/ Coding
w DD with Finite Element



ObjectivesObjectives

Homogeneous deformation and flow 
localization (Phase diagram over 
parameter space: σ, γ’, ρdis, ρdefect, T….). 

Identification of defect absorption 
mechanism, and formation of  defect free 
channels.

Dislocation- Elastic wave interaction.



Eff ective Plastic St rain (%)

0 .25 319 7
0 .17 407 3
0 .09 494 9
0 .01 582 48
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Material parameters

Elastic properties               
Dislocation Mobility
Core size = 1b 
Stacking-fault energy, and activation energy for cross-slip

Numerical Parameters:

DD Cell size  (= FE mesh size)        
Dislocation segment length  (min (3b) and max) (variable), 
number of integration points (10)
Number of cells (infinite domain; 3x3x3) 
Number of sub-cells (elements for  FE)
time step for DD;  Max flight distance (variable time step )
Time step for FE (dynamics) ~ (smallest dimension/shear 
speed)
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(bcc: Low mobility)
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fcc: High mobility
e.g AL: ( ) 1410 −≈ sPa.

Urabe and Weertman (1975)
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Stochastic Dislocation Dynamics (SDD)

Assumptions

1. Generated heat dissipates immediately into heat bath (thermal 
equilibrium).

2. Properties in dissipation process are known in advance based on 
quantum mechanical calculation/ atomistic simulations.

3. Dislocation motion is Markov process

4. Stochastic thermal agitation is added self-consistently and treat 
SDD as Brownian dynamics

5. Under constant pressure (stress) or constant volume

Bjog

Bmix

Bedge

Bscrew

Binterstitial
Elastic media
(Thermal bath)

isothermal

Interaction with
Phonon, Electron, Magnon, etc 

Bclimb

International Journal of Plasticity, 2002International Journal of Plasticity, 2002 , , Phi.Phi. MagMag , , 
2002, 2002, ASME J. Eng. Mater. And Tech, 2002.ASME J. Eng. Mater. And Tech, 2002.
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SDD: Stochastic Dislocation Dynamics

•Equation of motion of a dislocation segment of length ∆l with an 
effective mass density m*

•the stochastic stress component τ satisfies the conditions of ensemble averages:

0)( =tt ( ) ( ){ } ( )'2)'()( 22* ttlbmkTBBtt iphe −∆+= δtt

•The strength of τ is chosen from a a bivariate Gaussian distribution we 
generate stress pulses with two random numbers (r1 and r2)between zero and unity

( )tlbBkT i∆∆= ∑ 22τσ
256.5181.4300

81.1257.36100

40.5628.6850

11.478.1110
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SDD: Dislocation Percolation among Obstacle Arrays 

Random SFT grids

(Interval: 50b,25b)   

T = 300 K, σ =20 MPa

<112>

<110>
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SDD: Dislocation Percolation among Periodic Obstacle Arrays 

300 K

Y-Spacing = 25 b

300 K

100 K

100 K
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SDD: Dislocation Percolation among Random Obstacle Arrays 
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SDD:Thermalization of segment velocity at T = 300K

•Initial velocity = 
100m/s

•Each dislocation 
segment length = 

10b

•Total dislocation 
length = 1000 b 

•Maxwell 
distribution at t > 
40 ps



SDD: Relaxation

Right After Deformation

(εxy = 3.2%, ρ=3.69 x 1016/m2)

After Unloading 

(εxy = 2.7%, ρ=2.71 x 1016/m2)
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SDD: Relaxation

• At 0.5 ns after unloading

• εyz = 3.1%, ρ=3.05 x 1015/m2

(210) plane
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Cross-Slip
Cross-slip in DD

1. Cross-slip by bowing out onto the 
secondary plane to form a super-
double kink configuration (Shoeck-
Seeger mechanism).

2. Isotropic for loading direction

3. No consideration of time duration

Cross-slip in SDD

1. Cross-slip by immediate dissociation 
and expansion of Shockley partials 
(Escaig-Friedel mechanism)

2. Anisotropic for loading direction

3. Time duration is naturally included 
in the stochastic process.

(MD by Rasmussen et al 1997)



be

Edge Type Screw Type 

Implementation of Cross Slip Mechanism

bs

L d

L/2

DD: Schoeck-Seeger mechanism SDD: Escaig-Friedel mechanism

Edge type constriction 
àPositive elastic energy

Screw type constriction 
àNegative elastic energy

∆G (Schoeck-Seeger mechanism) 
> ∆G (Escaig-Friedel mechanism) 

Escaig-Friedel mechanism is 
much more likely.
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MD data for Cu: 

Activation free energy

= 1.2 eV  (Rao et al 1999)

= 2.7 eV  (Rasmussen et al 1997)

Typically, L = 20 ~ 80 b, d = 6.7 b for 

Stacking fault energy γ = 0.045J/m2
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Implementation of Cross Slip Mechanism

Algorithm

1. Generate a random number and 
choose a plane according to the 
activation enthalpy

2. Introduce parallel Shockley 
partials using coordinates of 
perfect screw.

3. Place a corresponding effective 
force barrier around the partials 

4. Move dislocations according to 
the Langevin forces + systematic 
forces.

Gglide∆

slipcrossG   ∆

Mode of motion of screw:

P rimary

Cro ss-S lip

b •Random Distribution of SFTs with average 
interval  of 40b 

•Snap shot after 50 ps

•PBC, T=300K 
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Dislocation Structure in Molybdenum

Pair Distribution Functions

•T = 300K, t = 32.3 µs                  
•under creep condition
•Mscrew = 0.01 x Medge
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SDD: Cross Slip in Irradiated Copper (before deformation)

•Random distribution 
of dislocations on 
(111) planes with b = 
a/2[-101]

•Average SFT size = 
10b & spacing = 50b
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SDD: Cross Slip in Irradiated Copper (after 1ns)

•Dislocation shapes 
before and after loading

• σ31=20 MPa for 1ns

•SFTs are removed for 
clear view

      Density in the unit of 1014 /m2 

primary x-slip
time (111) (-1-11) total

0 1.93 0 1.93
1 ns 3.49 1.88 5.37
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Statistical study of dispersion hardening 
by point-like obstacles II

M. Hiratani and H.M. Zbib

The critical resolved shear stress for a dislocation percolating 
through unlike penetrable obstacles is derived using Kocks-Friedel 
type dislocation model.  The partition function and density function 
are determined under the extreme condition of the partition function 
and geometrical condition. The analytical result implies a 
superposition law for the concentration of pinning obstacles on a 
dislocation, and the Pythagorean type-hardening rule for the critical 
resolved shear stress in the limit of weak obstacle strength. 
Additionally, the analytical results are compared with computational 
data for a modeled irradiated bcc metal by the discrete dislocation 
dynamics. 

 



SFT versus FS loop!

Interaction between a defect (Frank sessile loop or 
SFT) and a glide edge dislocation

A
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C

D

δγ

αγ

δβ

δα

βα

γβ

A

C

δDδD

δD B

Frank-
sessile 
loop

SFT

In the DD code  the SFT is constructed from six dislocations 
segments with Stair Rods Dislocations: e.g.
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Criterion for FS Loop Unfaulting and Loop Absorption SchemeCriterion for FS Loop Unfaulting and Loop Absorption Scheme

unfaulting from a sessile Frank partial loop (with a Burgers vector of a<111>/3 type) 
to a perfect generally prismatic loop (with a Burgers vector of a<110>/2 type)
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For any given Frank partial, there are three different Shockley partials (of type a<112>/6) 
that would transform it to a perfect dislocation of type a<110>/2.
All conjugate Shockley partials for a given Frank partial have been tabulated.

KharishiKharishi, T,, T, ZbibZbib, H.M., T. Diaz de la, H.M., T. Diaz de la RubiaRubia and M. Victoria,and M. Victoria,

NatureNature,, 406, 871406, 871--874, 2000. Philosophical Magazine Letters, 81, 583874, 2000. Philosophical Magazine Letters, 81, 583--593, 593, 
2001. Metallurgical and Materials Transactions B, 33B, 2852001. Metallurgical and Materials Transactions B, 33B, 285--296, 2002.296, 2002.



Material: Pd single crystal / and Cu
Defect density = 1020 - 1022 /m3 

Initial dislocation density 1011 - 1012 /m3

Loop size 1.28 nm to 3.48 nm
Random distribution of  105 - 4x106 point 
defects (prismatic loops/SFT’s).  Loops are 
on {111} planes with <111> Burgers 
vectors.

What is the relationship between 
increase in flow stress and defect 
density?
Possible mechanisms being 
investigated:
1. Defects decorating the dislocations 

(hard obstacles)
2. Dispersed defects (soft obstacles)
3. Combination of 1 and 2.
How do channels form?
•Defects are absorbed by the 
dislocation core.  
Absorption criterion?  Dislocation 
core-defect interaction (input from 
MD simulation)

What controls the size of the 
channel?
Cross-slip
Super-jogs (due to loop absorption?)

KharishiKharishi, T,, T, ZbibZbib, H.M., T. Diaz de la, H.M., T. Diaz de la RubiaRubia and M. Victoriaand M. Victoria

NatureNature,, 406, 871406, 871--874, 2000. Philosophical Magazine Letters, 874, 2000. Philosophical Magazine Letters, 
81, 58381, 583--593, 2001. Metallurgical and Materials Transactions B, 33B, 593, 2001. Metallurgical and Materials Transactions B, 33B, 
285285--296, 2002.296, 2002.





Starting from a single FK source,  
dislocations cross-slip  and double cross-slip
spreading normal to the original slip plane. 
Spreading is restrained by mutual trapping of 
dislocations segments
on parallel planes (e.g. dipoles)

Bands cleared from defects
(width:  200-300 nm)
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Interaction of Complete and Truncated Stacking Fault Tetrahedra 
with Glissile Dislocations in Irradiated Metals

Hiratani, H. M. Zbib, and B.D. Wirth 

Collapse and absorption mechanism of truncated stacking fault 
tetrahedra (SFTs) by approaching dislocations are proposed. Both self-
energy and elastic interaction energy in a straight dislocation-SFT 
system are calculated analytically.  Although an isolated SFT is in 
many cases more stable than a complete dislocation loop or Frank
sessile loop, it can become metastable under the influence of strain 
fields of surrounding dislocations. Interaction between incident
dislocations and SFTs can cause instability of the complete SFT 
relative to truncated SFT, Frank sessile loop, and complete dislocation 
loop. In general, interaction energy due to a single dislocation is 
found to be not large enough to overcome elastic barriers between a 
metastable truncated SFT and stable unfaulted loop by thermal 
activations. Pinning through core reactions and dislocation piled-ups in 
certain glide systems approaching the SFT are shown to lower the
barriers considerably.  These collapse and absorption mechanisms can 
explain flow localization and defect free channels in irradiated
materials.

Phil Phil MagMag. 2002. 2002



Evaluation of Elastic Interaction Energy
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Stability of truncated SFT w/o Dislocation

w Self-energy as a function of 
degree of truncation t

w Complete SFT is more stable 
than truncated SFT at small 
size

w Truncated SFT becomes 
metastable at L~100b

w Truncated SFT becomes 
more stable than complete 
SFT at L~125b
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Defect-Glissile Dislocation Interactive Force
Activation Energy 

profile

Stability of Complete SFT with Dislocation
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Stability of truncated SFT with Dislocation (I)

w Schematics for incident 
dislocation (Shockley Partial 
dislocations) on Truncated 
SFT with Burgers vectors.

w Segment B’C’ is glissile on a 
side-plane of SFT . 

w Alike case and Unlike cases 
are possible.

w Stability of truncated SFT is 
checked by system energy 
defined as
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Stability of truncated SFT with Dislocation (II)
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Stability of truncated SFT with Dislocation (III)
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Effect of Dislocation Pile-ups & Core-Reactions (I)

Pile-ups anchored with 
glissile Shockley partials 

Potential jog 
formation by core-
reaction   

Bowed dislocation 
pressing SFT down   
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• Once incident dislocation 
cut Shockley partials of SFT 
in truncated part, SFT will 
collapse by either mechanical 
work or core-reactions.
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For φp = 60°,  
Γ= 610.4 pN and Fp = 1.057 nN, 
For φp = 80°, 
Γ = 535.0 pN and Fp = 819.7 pN
for φp = 100°,
Γ= 473.2 pN and Fp = 608.4 pN
If the leading dislocation is incident on the two SFT segments, the SFT can hold the 
dislocation until the exerted force reaches 2Fp = 1.2 ~ 2.1 nN.

However, the force required to truncate the SFT reaches its maximum at t = t0 just before 
transformation into FSL, and it is usually comparable to the pinning force of SFT segments 
except regimes where annihilation or combination between two parallel segments takes place. For 
instance, Fc = 3.47 nN for the isolated case, and in unlike cases, Fc =1.99 nN at N= 4, s12 = 1b
and P = (0, 4b), and Fc = 1.75 nN at N = 4, s12 = 1b and P = (-b, 6.5b).  



Effect of Dislocation Pile-ups & Core-Reactions (II)

System energy vs t for 4 alike 
dislocation pile-ups

Activation energy at various 
glide plane distance in pile-ups 
(alike cases) 
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CRSS for Cases of Weak Obstacles of 2 CRSS for Cases of Weak Obstacles of 2 
Different KindsDifferent Kinds

Results in the limit of large obstacle dislocation arrays, 
and in the limit of weak obstacle strengths F1 (F2):

Obstacle concentration on pinned dislocation x1 (x2)

CRSS (Pythagorean type) ref: Koch et al (1986)
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Effect of Concentration on CRSS

The CRSS is normalized by the Orowan stress. (N) and 
(S) denote data obtained by numerical calculations in 
this work and simulation by Altintas (1978), respectively.
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DD simulations
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CRSS obtained by DD
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DS simulation

CRSS as function of the relative concentration 
of the hexagonal loops (yhex.loop).
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Conclusion
• Without incident dislocations, complete and truncated SFTs are more 
stable than Frank sessile loops or perfect loops, and possess a high 
activation energy that prevents them from collapsing. 
• The energy difference between a slightly truncated SFT and a complete 
SFT at typically observed sizes is small, a fraction of thermal energy of 
RT. 
•Interaction between a SFT and single dislocation is not strong enough to 
cause collapse of the SFT at RT except annihilation cases.
•Annihilation by core-reactions and formation of bow-out configuration 
with super-jogs are proposed.
•The activation energy can be significantly increased by pile-ups and the 
to transform truncated SFT to Frank sessile loops may be comparable to 
the thermal energy at room temperature. 
•Mechanical work and core-reactions are regarded as main collapse 
mechanisms after Shockley partials in SFT are intersected by incident 
dislocations.


