Stochastic Dislocation Dynamics:

Dislocation-Defect Interaction

WSU-CMM: Zbib, Hiratani
LLNL: Diaz de la Rubia, Bulatov, Wirth

Defects of Interest

SFTs

Frank/ Perfect Loops
Glissile dislocation loops
He void



Elements Involved

[ 1.Defects & Materials ] / \

/2.Sample Conditions\ 3.Simulation/ Coding
DD with Finite Element

Creep

Quasi-static Strain Rate
High Strain Rate

[ yefeet — 1022—~1024/m3

\ T =RT ~ 0.5 Tmelt / \ /
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Objectives

Homogeneous deformation and flow
ocalization (Phase diagram over

parameter space: S, d, I go I gefectr 1---+)-

# |ldentification of defect absorption

mechanism, and formation of defect free
channels.

# Dislocation- Elastic wave interaction.
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Material parameters

Elastic properties

Dislocation M obility

Coresize=1b

Stacking-fault energy, and activation energy for cross-slip

Numerical Parameters:

DD Cell size (= FE mesh size)

Dislocation segment length (min (3b) and max) (variable),
number of integration points (10)

Number of cells (infinite domain; 3x3x3)

Number of sub-cells (elementsfor FE)

timestep for DD; Max flight distance (variable time step )
Time step for FE (dynamics) ~ (smallest dimension/shear
speed)



Double-Kink Theory

(bcc: Low mobility)
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Fig. 14, Flot of damping constant B vs. log of tempera-
re for dislocations in jron.

Urabe and Weertman (1975)
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Stochastic Dislocation Dynamics (SDD)

. International Journal of Plasticity, 2002 , Phi. Mag ,
Assumptions 2002, ASME J. Eng. Mater. And Tech, 2002.

1. Generated heat dissipates immediately into heat bath (thermal
equilibrium).

2. Propertiesin dissipation process are known in advance based on
guantum mechanical calculation/ atomistic ssimulations.

Dislocation motion is Markov process

4. Stochastic thermal agitation is added self-consistently and treat
SDD as Brownian dynamics

5. Under constant pressure (stress) or constant volume

nix < isothermal EIaSUC med|a
B (Thermal bath)

Binterstitial
jog
Interaction with
Phonon, Electron, Magnon, etc




SDD: Stochastic Dislocation Dynamics

*Equation of motion of adislocation segment of length DI with an
effective mass density m'

m v, =- an+as +as,k+s +t—b ?

|
el ectron, phonon jli g

sthe stochastic stress component t satisfies the conditions of ensemble averages:

(t(t)) =0 (t@t(t))={2(B. + B, KT /(mb°Dl Jd t- t)

*The strength of t is chosen from a a bivariate Gaussian distribution we
generate stress pulses with two random numbers (r, and rz)between zero and unity

— T (K) s (MPa) at 10b | s (MPa) at 5b
L =S, \/- 2Inr, COS(ZpI’Z) 10 8.11 11.47

| o > 50 28.68 40.56

T \/ZKTa B/(b DIiDt) 100 57.36 81.12

300 181.4 256.5
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eInitial velocity =
100m/s

0.025
*Each dislocation
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SDD: Relaxation

(exy = 3.2%, r =3.69 x 10'%/m?)
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Cross-dip in DD

N

“Cross-slip by bowing out onto the
secondary plane to form a super-
double kink configuration (Shoeck-
Seeger mechanism).

|sotropic for loading direction

No consideration of time duration

Cross-dip in SDD

Cross-dip by immediate dissociatior
and expansion of Shockley partials
(Escaig-Friedel mechanism)

—

Anisotropic for loading direction

Time duration is naturally included
In the stochastic process.

(MD by Rasmussen et al 1997)
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DD: Schoeck-Seeger mechanism  SDD: Escaig-Friedel mechanism

Screw Type EdgeType

DG (Schoeck-Seeger mechanism) Edge type constriction
> DG (Escaig-Friedel mechanism) —>Pogitive elastic energy
Screw type constriction

Escaig-Friedel mechanismis

—>Negative elastic energy
much more likely.



Cross Slip Energetics
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MD data for Cu:

0.9 4---|:---> Activation free energ\DGce

0.85 > GI | = 1.2 eV (Rao et al 1999)

0.8 . DG(S , L, d) | = 2.7 eV (Rasmussen et al 1997)
Typically, L=20~80b, d=6.7 b for

0/ 50 100 Cfg) 200 250 500 g4acking fault energy g= 0.045/m2



| mplementation of Cross Slip M echanism

Mode of motion of screw:

= - _>
DGglide N

AN

Gooxain

A a4,
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1.

2.

3.

4,

Algorithm

Generate a random number and
choose a plane according to the
activation enthal py

Introduce parallel Shockley
partials using coordinates of
perfect screw.

Place a corresponding effective
force barrier around the partials

Move dislocations according to
the Langevin forces + systematic
forces.
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Dislocation Loop
Formation (M-H iratani)

Sig-yz = - 50 MPa
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Frame 001 | 26 Sep 2002 |

SDD:[Consecutive Cross-Slips]
Formaion of Planar Boundary Shear Stresses = 200 MPa
by Knitting Dislocations Bending Load along X-axis
M. Hiratani
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|rradiated Copper (before deformation)

1P 1N

Cross Sli

SDD




SDD: Cross Slip in Irradiated Copper (after 1ns)
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Statistical study of dispersion hardening
by point-like obstacles Il

M. Hiratani and H.M. Zbib

The critical resolved shear stress for a dislocation percolating
through unlike penetrable obstacles is derived using Kocks-Friedel
type dislocation model. The partition function and density function
are determined under the extreme condition of the partition function
and geometrical condition. The analytical result implies a
superposition law for the concentration of pinning obstacles on a
dislocation, and the Pythagorean type-hardening rule for the critical
resolved shear stress in the Ilimit of weak obstacle strength.
Additionally, the analytical results are compared with computational
data for a modeled irradiated bcc metal by the discrete dislocation
dynamics.




SFT versus FS loop!

Inter action between a defect (Frank sessileloop or
SFT) and aglide edge dislocation

=

dD

dD dD

A

Frank-
sesslle
loop

Inthe DD code the SFT is constructed from six dislocations
segments with Stair Rods Dislocations: e.qg.

by = by + by :%[ 121] +%[11§] :%[OII]

Etc..

SFT



Criterion for FS Loop Unfaulting and L oop Absorption Scheme

unfaulting from a sessile Frank partial loop (with a Burgers vector of a<111>/3 type)
to a perfect generally prismatic loop (with a Burgers vector of a<110>/2 type)

DE = faulted state - unfaulted state

2 | . .
DE (stressed ) = A®®)g + A®®n(?s Mpe - Rea ge? N9 EER0
. L ) 24 el-ng ge, g4

E\ifnt
A = loop area =pR?
g = surface tension = stacking efault energy

b*=h' - bP = Shockley partial

e, = characteristic core dimension = % 4b

For any given Frank partial, there are three different Shockley partials (of type a<112>/6)
that would transform it to a perfect dislocation of type a<110>/2.
All conjugate Shockley partials for a given Frank partial have been tabulated.

Kharishi, T, Zbib, H.M., T. Diaz de la Rubia and M. Victoria,

Nature, 406, 871-874, 2000. Philosophical Magazine Letters, 81, 583-593,
2001. Metallurgical and Materials Transactions B, 33B, 285-296, 2002.




Kharishi, T, Zbib, H.M., T. Diaz de la Rubia and M. Victoria

Nature, 406, 871-874, 2000. Philosophical Magazine Le
81, 583-593, 2001. Metallurgical and Materials Transactions B,
285-296, 2002.

What istherelationship between

increasein flow stress and defect

density?

Possible mechanisms being

investigated:

1, Defects decorating the dislocations
(hard obstacles)

2| Disper sed defects (soft obstacles)

3. Combination of 1 and 2.

How do channelsform?

*Defects are absorbed by the

dislocation core. Material: Pd single crystal / and Cu
Absorption criterion? Dislocation Defect density = 1020 - 1022 /3
core-defect interaction (input from Initial dislocation density 101 - 1012 /m?
MD simulation)

Loop size 1.28 nm to 3.48 nm

Random distribution of 10°- 4x10° point
channel? defects (prismatic loops/SFT’s). Loops are
Cross-dip on {111} planeswith <111> Burgers

Super-jogs (due to loop absorption?) Vectors.

What controls the size of the






Starting from a single FK source,
dislocations cross-slip and double cross-dip
spreading normal to the origina slip plane.
Spreading is restrained by mutual trapping of
dislocations segments

on parallel planes (e.g. dipoles)

Bands cleared from defects
(width: 200-300 nm)



L oop density:
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Interaction of Complete and Truncated Stacking Fault Tetrahedra
with Glissile Dislocations in Irradiated Metals

Hiratani, H. M. Zbib, and B.D. Wirth phil Mag. 2002

Collapse and absorption mechanism of truncated stacking fault
tetrahedra (SFTs) by approaching dislocations are proposed. Both self-
energy and elastic interaction energy in a straight dislocation-SFT
system are calculated analytically. Although an isolated SFT is in
many cases more stable than a complete dislocation loop or Frank
sessile loop, it can become metastable under the influence of strain
fields of surrounding dislocations. Interaction between incident
dislocations and SFTs can cause instability of the complete SFT
relative to truncated SFT, Frank sessile loop, and complete dislocation
loop. In general, interaction energy due to a single dislocation is
found to be not large enough to overcome elastic barriers between a
metastable truncated SFT and stable unfaulted loop by thermal
activations. Pinning through core reactions and dislocation piled-ups in
certain glide systems approaching the SFT are shown to lower the
barriers considerably. These collapse and absorption mechanisms can
explain flow localization and defect free channels in irradiated
materials.




Evaluation of Elastic Interaction Enerqy

i W, = ¢, b,.s,.dA

yl121]

1.Blins Formula for 2
closed loops

2. Decomposition of SFT
Into Volterra loops




Stability of truncated SFT w/0 Dislocation

0.1

300 Cooh

0.08

0 02040608 1 0 020406038 1
t t

t = 1. complete SFT
t = 0: Frank Sessile loop

Self-energy as a function of
degree of truncation t

Complete SFT is more stable
than truncated SFT at small
Size

Truncated SFT becomes
metastable at L~100b

Truncated SFT becomes
more stable than complete
SFT at L~125b

t=L'/L




Stability of Complete SFT with Dislocation

Defect-Glissile Dislocation Interactive Force

Force profile Activation Enerqy
profile

U
N
TN

F(pN)
Case for a perfect dislocation gliding
on a base plane of SFT (d-plane)




Stability of truncated SFT with Dislocation (1)

_ Schematics for incident
unlike dislocation (Shockley Partial
o dislocations) on Truncated
[121] SFT with Burgers vectors.
Segment B'C’ is glissile on a
side-plane of SFT .

Alike case and Unlike cases
are possible.

Stability of truncated SFT is
checked by system energy
defined as

DE=E

Int

(tSFT)"'Eself (tSFT)' Eint(pSFT)' Es (pSFT)

Case for a perfect dislocation gliding
on a side plane of SFT (a-plane)




Stability of truncated SFT with Dislocation (11)

Unlike case

\ y=-05
© 015

isolated
/y=4

z=6

z[117]
A

v Alike case

z=3

\  isolated

15

S

system energy at various positions of incident Shockley partials.




Stability of truncated SFT with Dislocation (111)

Zz[111]

Unlikecaseat t = 0.1 Unlike caseat t = 0.7

y[121]

02—

\ \\‘\\wlz - S/ A NErT I NN \

@ ‘ | 0. Q2§\ ¢) 02 0.0




Destruction of SFT by Annihilation

(3P (4

—.)._

Ba

Vacancy Absorption =2 Superjogs are introduced




Effect of Dislocation Pile-ups & Core-Reactions (1)

Potential joq
formation by core-
reaction

Ny

Pile-ups anchored with
glissile Shockley partials

e Onceincident dislocation
cut Shockley partialsof SFT
In truncated part, SFT will
collapse by either mechanical
Bowed didocation work or core-reactions.

pressng SFT down




__2sn’(f /2) TE|
L cos(f /2) f |

f®f
2 } z N 4 2 e
- mb2L }4-2(1+ncos(2f)logg L U (4_n)logg(1+secf) LU\-I
16p (1- ”)T cosf é2(1+ cosf )er H & leer %
For|f j=60°,
G=610.4 pN and Fp = 1.057 nN,
Forf ,=80°,
G=535.0 pNand F,=819.7 pN
for f ;= 100°,

G=473.2 pN and F = 608.4 pN
If the leading dislocation is incident on the two SFT segments, the SFT can hold the
dislocation until the exerted force reaches 2F =1.2 ~ 2.1 nN.

However, the force required to truncate the SFT reaches its maximum at t = t, just before
transformation into FSL, and it is usually comparable to the pinning force of SFT segments
except regimes where annihilation or combination between two parallel segments takes place. For
instance, F, = 3.47 nN for the isolated case, and in unlike cases, F_. =1.99 nN at N= 4, s, = 1b
and P = (0, 4b),and F_=1.75 nNatN=4, s, = 1band P = (-b, 6.5b).



Effect of Dislocation Pile-ups & Core-Reactions (11)

10

0.25

System energy vst for 4 alike Activation energy at various
didocation pile-ups glide plane distance in pile-ups
(alike cases)




CRSS for Cases of Weak Obstacles of 2
Different Kinds

Results in the limit of large obstacle dislocation arrays,
and in the limit of weak obstacle strengths F1 (F2):

# Qbstacle concentration on pinned dislocation x1 (x2)
3
yi F

(} +x,=1 y,+vy,=1)

Xi =
v,F’ +y,F,;

#® CRSS (Pythagorean type) ref: Koch et al (1986)

Z ad hoc superposition

S - F, o U a
ttot—t +t +O U to =t; +t;

F t Fz 1] H .
empirical rule of mixture

D AT 2



Effect of Concentration on CRSS

0.04

—-{1=0.05,f2=0.1(N) < 1=0.05,f2=0.1(S)
—%{1=0.01,f2=0.05(N) 4 1=0.01,f2=0.05(S)
—€-{1=0.01,f2=0.1(N) © f1=0.01,f2=0.1(S)
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Y2

# The CRSS iIs normalized by the Orowan stress. (N) and
(S) denote data obtained by numerical calculations in
this work and simulation by Altintas (1978), respectively.



DD simulations
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# Snap shot of
DD simulation

# DD simulation data for
plastic strain vs comp.
time step.



CRSS obtained by DD

2 —4 2 2
_Equationt tot —t 1 +t 2

¢ DS simulation ? 3

s (t.?

0 0.2 0.4 0.6 0.8 1
Yhex.loop

# CRSS as function of the relative concentration
of the hexagonal 100ps (Ypey 100p)-



Conclusion

 Without incident dislocations, complete and truncated SFTs are more
stable than Frank sessile loops or perfect loops, and possess a high
activation energy that prevents them from collapsing.

* The energy difference between a dlightly truncated SFT and a complete
SFT at typically observed sizes is small, a fraction of thermal energy of
RT.

oI nteraction between a SFT and single dislocation is not strong enough to
cause collapse of the SFT at RT except annihilation cases.

«Annihilation by core-reactions and formation of bow-out configuration
with super-jogs are proposed.

*The activation energy can be significantly increased by pile-ups and the
to transform truncated SFT to Frank sessile loops may be comparable to
the thermal energy at room temperature.

*Mechanical work and core-reactions are regarded as main collapse
mechanisms after Shockley partialsin SFT are intersected by incident
dislocations.




