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Presentation OutlinePresentation Outline

Status of Dislocation Dynamics;
Fusion Materials Applications;
Recent Achievements;
Challenges, Limitations & Future 
Directions:

Near-Term (1-3 years);
Long-Term (> 3 years).
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Status of Dislocation Status of Dislocation 
DynamicsDynamics

The Objective of DD is the development of Physically-Based Computer 
Simulations of Plasticity and Fracture Processes in Fusion Materials;
Eliminate Atomic Degrees of Freedom;
Develop “Ab initio elasticity-based” simulations (i.e. no rules);
Input Parameters are few: 

Elastic Constants (well-known);
Dislocation Mobility (experiment/ MD / ab-initio simulations).

The Method has World-Wide Appeal: 
Lattice Methods  (Kubin, Canova, Devincre, …..)
Force Methods  (Zbib, Hirth, Bulatov, Rhee, ….)
Differential Stress Methods (Schwarz, Tersoff, LLNL folks, ….)
Parametric Dislocation Dynamics, PDD (Ghoniem, Sun, Huang, … )
Phase Field Methods (Khatchaturian, Wong, …).
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Fusion Materials Fusion Materials 
ApplicationsApplications

1) Dislocation-Microstructure Interaction (SIAs, SFTs, 
Voids, Bubbles, Precipitates, and Grain Boundaries);

2) Deformation Mechanisms (e.g. Flow Localization, 
Fracture);

3) Constitutive Modeling (e.g. stress-strain-temperature-
strain rate-flux-fluence relationships);

4) Understanding of Experimental Observations (e.g. 
Radiation Hardening & Softening);

5) Experimental Design of Innovative Materials (e.g. 
Thin Films & Nano-layers);

6) Material Design (Alloying, microstructure 
distribution, grain size, nano-laminates, etc.)
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Application (1): DislocationApplication (1): Dislocation--
Microstructure InteractionMicrostructure Interaction
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DislocationDislocation--Microstructure Interaction: Microstructure Interaction: 
KMC Modeling of Pinning and RaftingKMC Modeling of Pinning and Rafting

In collaboration with RISO (Singh) & 
ORNL (Stoller/ Osetsky)
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Limitations and Future of DislocationLimitations and Future of Dislocation--
Microstructure InteractionMicrostructure Interaction

Status:Status:
Rigorous dislocation-dislocation, and dislocation-SIA (isotropic);
Approximate for SFT, voids, and precipitates;
Stochastic (KMC) and thermally-activated started;
Time scale problem for microstructure evolution is not solved;

Limited study of interaction with “defect atmospheres”

Future Plans:Future Plans:
Anisotropic elasticity;
Rigorous simulations for SFTs, voids and precipitates;
Dislocation-grain boundary interactions.
Microstructure cutting and sweeping (e.g. voids, bubbles and 

precipitates).
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Application (2): Flow Application (2): Flow 
Localization & FractureLocalization & Fracture

In collaboration with RISO (Singh) & PNNL/ORNL 
(Edwards/ Zinkle)

Climb

Before annihilation 

After annihilation

Critical angle 

7.5 µm

b

Mechanism: (1) glide, (2) local thermal 
destruction of vacancy clusters, (3) climb to 
widen channel.
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Limitations and Future of Limitations and Future of 
Flow LocalizationFlow Localization

Status:Status:
Two explanations for channel width: (1) climb/glide/localized 

thermal dissolution (Ghoniem et al.), (2) dipole width (Zbib et al);
Both are not totally consistent with available data;
MD results do not show SFT destruction;
No conclusive explanation for inter-channel length scale;
Channel source, termination and dynamics (i.e. time scale) not clear.

Future Plans:Future Plans:
Extend the “hot spot” avalanche pileup theory of Armstrong, Head, 

et al. (Eglin Air force Base);
Simulation of avalanche time evolution and comparison with 

Neuhauser;
Coupled DD/ mesh-free simulations for inter-channel length scale.
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Research on Fracture Research on Fracture 
ModelingModeling
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Collaboration: 
Odette et al (UCSB)
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Status & Future Plans of Status & Future Plans of 
Fracture ModelingFracture Modeling

Status:Status:
J. Huang (PhD) started modeling true 3-D cracks as “Parametric 

Dislocation Pileups,”
S. Nooronha (post-doc, Hirsch) started to couple ABACUS 

elasto-plastic FEM with the Oxford 2-D dislocation emission at 
precipitates;

Effective dislocation mobility in a random field of SFTs/ voids.

Future Plans:Future Plans:
Model Fracture specimens at UCSB for pure Fe & ferritic steels;
Determine DBTT shifts and consistency with Master Curve 

method;
Investigate 3-D aspects (e.g. crack shape, stress triaxiality, 

surface/ embedded flaws, etc.)
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Application (3): Constitutive Application (3): Constitutive 
Modeling & Anisotropic DDModeling & Anisotropic DD
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Limitations and Future of Limitations and Future of 
Constitutive ModelingConstitutive Modeling

Status:Status:
Single Crystal (Isotropic & anisotropic)
Small strain (<1%);
Small volume (<1 micron);
Single Processor (~1 day/ case).

NearNear--Term Progress (1Term Progress (1--3 yrs):3 yrs):
Parallel Code Completed;
LeSar/ Rickman Far-Field Method Implemented;
Computer Science Approaches Started (Load Balancing, Near-

neighbor Searches, Cluster Computing efficiency);
Will be deployed on the ISIS Beowulf Cluster at UCLA.
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LongLong--Term Goals of Constitutive Term Goals of Constitutive 
ModelingModeling
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1)1) Efficient, Experimentally Calibrated Efficient, Experimentally Calibrated 
Parallel Code for Single Crystals; Parallel Code for Single Crystals; 

2)2) Coupling between Crystal Plasticity Coupling between Crystal Plasticity 
and DD;and DD;

3)3) Development of Development of Polycrystal Polycrystal Plasticity Plasticity 
Code with Grain Boundary Evolution;Code with Grain Boundary Evolution;

4)4) Coupling with: (a) MeshCoupling with: (a) Mesh--Free for Flow Free for Flow 
Localization, (b) FEM for Design;Localization, (b) FEM for Design;

5)5) Continuum alternative requires vast Continuum alternative requires vast 
data base and data base and ““ad hocad hoc”” assumptions.assumptions.
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Application (4): Understanding Application (4): Understanding 
Experiments on Radiation Hardening Experiments on Radiation Hardening 

& Softening& Softening
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In collaboration with RISO (Singh) & PNNL (Edwards)
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Application (5): Experimental Design Application (5): Experimental Design 
of Innovative Materials of Innovative Materials 

(Stereographic TEM of Thin Films)(Stereographic TEM of Thin Films)
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Application (6): UltraApplication (6): Ultra--strong strong 
Material DesignMaterial Design
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