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A Concurrent Strategy

Material descriptions (constitutive, damage failure)
σ(ε,ε’,T), Ke(T, ε’),... = fp(MVs, φt,Ti, dpa, He,...)

from empirically-calibrated microstructurally
based multi-scale physical models and simulations

Analytical tools: plasticity laws, structural 
failure assessment methods and codes

Advanced multiphysics
(themalhydraulic/

inelastics stress…) FE 
codes for design, 

operation (ISI), safety 
and component lifing

(benchmarks)

Performance 
maps

Advanced materials
systems development



Deformation Behavior



Dynamic Strain Aging In Vanadium
• At temperatures where interstitial solutes are mobile serrated 

yielding occurs in the Lüders extension and jerky flow 
(Portevin-Le Chatelier) occurs in the strain-hardening regime 
due to DSA.

• The DSA regime is bounded by certain values of temperature 
and strain rate and is characterized by negative strain rate 
sensitivity (SRS).

• Strain rate sensitivity parameter:

m=
1
σ

δσ
δlnÝ ε 

ε,T



Load-Elongation Curves For 
Annealed V-4Cr-4Ti

•maximum in strain-rate sensitivity occurs at 600°C in V-
4Cr-4Ti
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Magnified View of Serrated and Jerky Flow 
Behavior in Vanadium 

• Estimate time for 
diffusion of interstitials

• segregate to immobile 
and mobile dislocations

• identify elements 
responsible for DSA

• Calculate average time 
between minima (τ)

• 300°C and 10-5/s

τ = ~37.5s

• 200°C and 10-5/s

τ = ~129s

• Diffusivity calculations show:
• Carbon and oxygen are primarily responsible for DSA effect below 300°C
• Nitrogen has similar mobility at a higher temperature of 400°C



Temperature Dependence of σY and σf
For A Strain Rate of 10-3 s-1
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Constitutive Models
• Starting from a unified microstucture/dislocation mechanics-

based constitutive model σ(ε, ε’, T) for unirradiated bcc 
alloys, develop a multiscale model for irradiated alloys, 
ultimately incorporating results of atomistic and dislocation 
dynamics simulations.

• Unirradiated σ(ε, ε’, T) for 
V-4Cr-4Ti with activated flow 
and dislocation production-recovery 
treatments of strain hardening
are being integrated in a unified 
and comprehensive bcc model 
framework - including links to 
microstructure and effects such 
as dynamic strain aging.

V-4Cr-4Ti





Yield Strength and Uniform Strain in Neutron-
Irradiated V-4Cr-4Ti

4-30 dpa



Deformation
• Low to intermediate temperature irradiation results in 

substantial hardening (∆σy) and even more significant loss 
of uniform strain capacity (∆εu).

• The ∆σy and ∆εu are accompanied by varying degrees of 
flow localization
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Deconvoluting Localization Effects
• Isolate and properly integrate multiscale parts - and 

determine what controls observables.

Microconstitutive
dislocation-obstacle

interactions and
processes controlling 

local σcrss(εlocal)

Continuum 
Mechanics

large geometry-
change deformation & 

load- instability-
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Micromechanics
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Modeling the Tensile Test

• ABAQUS 1320 8-noded 
brick elements on 4x1x0.2 
1/8 symmetry plate using J2
incremental flow theory.
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Strain Softening-Hardening
• s(e) data fit by σfl(ε) with a gradual yield drop softening 

followed by hardening. Estimate of the minimum ∆σfl
shows a persistence of irradiation hardening to high ε.
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Characterization of Necking Strains
• Combine confocal and optical microscopy for in-situ 

tensile test imaging to compare with FEA results. Also 
interrupted/post-test examination.
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Implications of FE σ(ε)-s(e) Modeling
• Effects of irradiation on the s(e) curves can reproduced in 

FE simulations using continuum, incremental flow (J2) 
laws.

• Competition of initial  softening followed by modest 
hardening - significant irradiation hardening persists to 
high ε.

• Role of micro-localization on macro constitutive behavior 
may be modest, depending on the situation (if not shear 
dominated?). Guide for MS-modeling and experiment 
(what to look for), including compatibility micromechanics
of localization, dislocation dynamics and structure 
evolution with ε and the local mechanics of defect 
softening.



Irradiation Effects of V-4Cr-4Ti

Tirr = 200°C, 0.4 dpa 0.1 dpa







The MC-∆T Method
• Combinations of many variables control embrittlement - it is 

prohibitive to ‘measure’ a huge number of toughness-
temperature K(T) curves - must use (very) small specimens.

• MC-∆T method measures a reference toughness- temperature 
(To) with a small number of small specimens for small family 
of fixed Keff(T-To) curve shapes. 

• Use Keff shapes and To shifts (∆To)  to account for loading rate,
irradiation, size and geometry, statistical effects and margins in 
both testing and application. 

• The ∆To can be independently measured, 
assessed with tensile data and modeled.

• Specific to thin-fusion structures
(vs. heavy-section fracture mechanics).

QuickTime™ and a
TIFF decompressor

are needed to see this picture.

RPV Steels



MC-∆T Method
• K(T-To) shape & ∆Ttot ≈ ∆Tirr+∆Trate+∆Tsize/geom+∆Tstat.+∆Tmarg
• Seek rigorous physical basis (limits) for MC-shape(s), size 

effects (statistical and constraint mechanics), links of shape &
∆T to fundamental properties & microstructure (irradiated).

• Major progress and MC-∆T subject of international research 
(irradiation studies include: US-Euope, US-JAERI, US-
MEXT)
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Micromechanical Models
• Models of cleavage combine σ(ε, ε’,T) in FE simulations 

of crack tip σ-ε fields with local fracture properties (σ*-
A*/V* or σw, m) mediated by trigger particle micro-
structures & intrinsic ferrite toughness to treat: 
- constraint-statistical(W,a/W,B) size effects 
(small specimens to structures) on K(T�) and To

- loading rate and irradiation on ∆To [∆σ(ε) and ∆σ*]
- invariance of Kssy(�T) for small scale yielding
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FE σ(ε)-σ*(A*) Model

QuickTime™ and a
TIFF decompressor

are needed to see this picture.

FE - A(σn/σy, KJap) 
σ(ε, ε’,T) model

Cracked Body Geometry

Micromechanics
A(σn = σ*, KJc/e) = A*

QuickTime™ and a
TIFF decompressor

are needed to see this picture.
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3D FEA
• Ke(T) curves can be fit using a combination 

of 3D FEA, tensile-derived σ(ε,T), and a 
σ*-A* criterion for cleavage fracture
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Other Fracture Issues
• Low ductile tearing intitiation and resistance, shear band 

decohesion. 
• Interstitial impurity effects (NIFS heat of 4CR-4Ti).
• Toughness-strength optimization in advanced alloys such 

as higher strength-multiphase V alloys. 
• Non-hardening embrittlement mechanisms in V and IG 

fracture (impurity-solute segregation, phase/structural 
instabilities, H, damage).

• Subcritical crack growth (fatigue, envonmentally assisted).
• Realities of actual service: warm pre-stressing, shallow 

surface flaws, multiaxial/mixed mode loading, dynamic 
strain aging, creep relaxation.



Flow Localization - Fracture Interaction

• Lower mixed mode ductile fracture toughness - lead to 
shear band decohesion in irradiated materials?

• Enhanced formation of microcracks (cleavage and IG) ) by 
coarse slip bands - reduce σ*?
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Implications to Fusion Structures

• Structural ‘strength and ductility’ depends on both intrinsic 
material and extrinsic factors related to size and geometry. 
- large ∆σy are beneficial and low eu are detrimental, but -

cases such as simple bending are not sensitive to eu, while
shear dominated processes may be very sensitive. 

- effects of lower Keff by irradiation ∆σy depend on size
and geometry - a material state that leads to elastic fracture 
(σ << σys) of a heavy-section pressure vessel may have 
little or no effect on the fracture stress and effective
ductility of a thin structure with a small surface crack.

• An irradiated  structure can be effectively ‘stronger’.



Performance Maps
• Example -FE simulation of V-4Cr-4Ti bend bar.
• Objective - define functional material- structural metrics 

that can map detrimental vs. beneficial changes stress and 
strain or ductility capacity.
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Ongoing Experiments

• Jupiter Irradiation Experiment -- R. Kurtz



What Remains?

• Constitutive laws for irradiated material
– σ(ε,ε’,T) = fp(φt,Ti, dpa, He,...) 
– Multiscale modeling
– Flow localization
– Contributions of DSA



What  Remains -- cont’d

• Continued development of MC-∆T and
micromechanics approaches to characterize 
and predict Ke(T) for irradiated material
– Incorporation of constitutive laws for irradiated 

material in FEA simulations
– Micromechanics in irradiated materials--

cleavage and ductile fracture
– ∆T’s for constraint, irradiation, loading rate



Other Fracture Issues
• Low ductile tearing intitiation and resistance, shear band 

decohesion. 
• Interstitial impurity effects (NIFS heat of 4CR-4Ti).
• Toughness-strength optimization in advanced alloys such 

as higher strength-multiphase V alloys. 
• Non-hardening embrittlement mechanisms in V and IG 

fracture (impurity-solute segregation, phase/structural 
instabilities, H, damage).

• Subcritical crack growth (fatigue, envonmentally assisted).
• Realities of actual service: warm pre-stressing, shallow 

surface flaws, multiaxial/mixed mode loading, dynamic 
strain aging, creep relaxation.


