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Outline

= Thermal creep data base and ongoing experiments

= [rradiation creep data base and planned
experiments

= Creep-swelling interactions
= High-temperature helium embrittlement

= Swelling data base
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Deformation Mechanism Map for V-4Cr-4Ti
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Diffusion-Controlled Creep Mechanisms

Murty, Mohamed and Dorn, 1972
DGb d G
Mechanism
Climb of Edge Disl ocations
Visco us Glide (Microcreep)

Low-Te mperature Climb
Harper-Dorn

Nabarro-Herring

Cobl e
GBS (Superplasticity)

Nabarro-S ubgrain
Nabarro-Bardeen-Herring

WIFLNPFPIPFPIPRPINW O3S
oONIVNwWw|NVo|lo|o|o | 3

U.S. Department of Energy
Baﬂe“e Pacific Northwest National Laboratory



Temperature Dependence of Creep Rate In
Pure Vanadium

Wheeler et al., 1971
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Stress Dependence of Creep Rate in Pure
Vanadium
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Stress Dependence of Creep Rate in V-Ti
Alloys at 700 and 800°C
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Stress Dependence of Creep Rate in V-Cr-Ti
Alloys Between 600 - 800°C
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Effect of Oxygen on Creep Rate of Vanadium
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Effect of Alloy Purity on Tensile Properties of
NIFS Heat-1
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Purification of NIFS Heat-1 by Zr-treatment Fukumoto. et al.
» Decreased yield stress and UTS at high temperature |
 Supression of dynamic strain aging behavior at 700°C

g
The effect of interstitial impurities on the mechanical

properties of V-4Cr-4Ti alloys is eliminated at the 20 wppm
level.



Dependence of Creep Rupture Time on
Oxygen Concentration
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Even though creep rupture time is extended, oxygen can severely embrittle vanadium.



In a Lithium Environment, Oxygen is Removed
From Vanadium
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Experiments Needed to Separate the Effects of
Irradiation and Environment

1. DHCE -- Irradiation, He, Li, Thermal

2. RTHD (Real-Time Helium Doping)
-- He, LI, Thermal

3. LTCE (Li Thermal Creep Experiment)
-- LI, Thermal (low oxygen)

4. Thermal Creep Experiment
-- Thermal effects (oxygen increases)



Thermal Creep Experiments

= Characterize the thermal creep behavior of vanadium alloys from
650°C to 800°C at effective stress levels below yield

= Elucidate fundamental mechanisms controlling creep behavior of
vanadium alloys

= Three experimental studies:
* Biaxial creep tests in Li (ORNL)
* Uniaxial creep tests in vacuum (ANL)
* Biaxial creep tests in vacuum (PNNL)

U.S. Department of Energy
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Creep Matrix in Vacuum

= Pressurized tubes: 4.57 mm diameter x 25.4 mm long of V-4Cr-
ATi and V-3Fe-4Ti (PNNL)

= Flat tensile specimens of V-4Cr-4Ti: 19 mm x 4.5 mm x 1 mm
gauge section (ANL)

= Round tensile specimens of V-4Cr-4Ti: 2.54 mm diameter x 19
mm long (ANL)

= Temperatures: 650, 700, 725, 800°C

m Stresses:
650 700 25 800°C
175-335 6/7-159 150-200 26-137 MPa
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Creep Matrix In Lithium

m Pressurized tubes of V-4Cr-4Ti, 4.57 mm diameter x 25.4 mm
long to match vacuum tests (ORNL)

= [emperatures: 665, 765, 800°C

= Stresses:
665 765 800°C
59-117 25-84 30-100 MPa




Time Dependence of Effective Creep Strain at
650 and 725°C for V-4Cr-4Ti
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Time Dependence of Effective Creep Strain at
800°C for V-4Cr-4Ti
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Effect of Li on Creep at 665-700°C

At 665-700°C strains are very small, but the trend of higher
creep rates is again shown. Some primary creep is suggested.
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Effect of Alloy Purity and Cr Content on
Creep of NIFS Heat-1
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Stress Dependence and Activation Energy for
Creep
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Creep-Rupture of Vanadium Alloys
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Creep Rupture in Lithium

A Larson-Miller presentation shows that failure in Li occurs slightly prior to vacuum tests.
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Effect of Increased Purity and Cr Content
on Creep Rupture

Fukumoto, et al.
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* Increasing Cr level improves creep resistance
 Lowering interstitial levels degrades creep performance



Summary of Thermal Creep Tests

= The normalized secondary creep rate (ekT/DGB) is power-law dependent
on stress with n ~ 4 at normalized stresses (c/G) greater than ~2x103

= The activation energy, Q, for creep at 700 - 800°C is ~ 300 kJ/mole which
IS similar to the self diffusion activation energy for pure vanadium

= The predominant creep mechanism appears to be climb-assisted
dislocation motion at normalized stresses (c/G) greater than 103

= The creep mechanism may change at lower stresses where the stress
exponent is near unity

= The creep rates from tensile samples are several times greater than creep
rates from pressurized tubes reflecting the differences in oxygen
concentration

= Consistent with low-oxygen and lower strength, creep rates in Li are lower
than those in vacuum

= Higher levels of Cr improve creep resistance but increased purification
degrades creep performance

U.S. Department of Energy
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Irradiation Creep - Phenomenological
Description

= Orders of magnitude increase in . Gilbert et al, 1972
creep strain during relatively low- | ' '
. . s 134 MPa
temperature irradiation 454 °C

= Degree of creep enhancementis  **[ ]
greatest at low temperature,
decreasing as the thermal creep
regime is approached

= Constitutive equation:

-4

Tensile strain, x10

&‘C = B (¢’ T)gn N = 1 Thermally-induced
0"’¢ 0 densification and creep |
AS(o, T ! . .
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Stress Dependence of Irradiation Creep In the
Absence of Swelling

Toloczko, 1999
200 . .

= |rradiation creep exhibits a
linear stress dependence
over a limited stress range
that is temperature
dependent

s Similar behavior for FCC and
BCC stainless steels
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Creep-Swelling Coupling
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Toloczko, 1999
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Limited Irradiation Creep Data on Vanadium
Alloys

Tsal et al, 2000
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Mechanical Property Degradation Due to He

= Above 0.5T,, the coalescence of cavities at Lo+ Schroeder and Batflasky, 1983
GBs can result in intergranular fracture I —
. . . [ —O—unlmpante
= The life time under creep and creep fatigue ; . 3 pre-implanted, 300K
e . . . 4 —&— pre-implanted, 1023K
conditions is dominated by the time of stable 10° L MR o

gas driven growth of bubbles on GBs (rather
than by gas driven growth of intergranular
cracks
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Effect of Strain Rate

Van der Schaaf et al, 1977
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Effect of He on Tensile Properties of
Vanadium Alloys

He embrittlement

In V alloys

becomes evident
In tensile tests for:

T>700°C

C,.> 100 appm

Batielle

eot (He)e,; (no He)

=

0.1

600

0.6

TITy,
028 032 036 04 044 048 052 0.56
| T T T | T T T | | T | T T | T T II | T T II | T T T
‘ | de/dt=0.25-1.1x103s"1
~8 appm He |
o= ASD 90 appm He
b TN A
0 x\ﬁ A .
i X; “\\\\’\ 2 appm He
| 80 appm He N 4 \
ANy
200 appm He A \
\

—e— V3TilSi (Ehrlich & B6hm 1969)
— o~ - VA15Cr5Ti (Santhanam et al 1973)

i m V3TilSi (Braski 1988)
O VI15Cr5Ti (Braski 1988)
- -A--V20Ti (Tanaka et al 1981)
¢ VI15Cr5Ti (Grossbeck&Horak 1987)
¢ VACr4Ti DHCE (Billone 1997)

I

cd

700

800

900

1000 1100 1200 1300
Temperature (K)

U.S. Department of Energy
Pacific Northwest National Laboratory



Overview of DHCE Concept

= Goal is to simulate fusion reactor He/dpa for V alloys
= Specimens are immersed in Li
= [nitial tritium loaded into mother alloy

= Tritium equilibrates with Li/V system when the irradiation
starts and the temperature rises

= Tritium in V decays to *He

= Tritium loss due to decay and diffusion can be replaced by
generation from 6Li

= |deally the He/dpa rate is nearly constant at the desired
fusion rate for the entire experiment

U.S. Department of Energy
Ba"e“e Pacific Northwest National Laboratory



DHCE-1 Design Parameters

Capsule

Parameter 4D1 4D2 5E2 5D1 SE1 5C1 5C2
DPA 25 27 13 14 18 18 14
Temperature, °C 430 430 430 500 500 600 600
°Li fraction 0.05 0.045 0.01 0.065 0.01 0.08 0.08
Initial Tritium,Ci 99 70 26 74 57 16 18
Final Tritium,Ci 90 66 22 55 37 8.7 10.4
Post-test Tritium, Ci* 46.3 38.4 3.4 ND ~24.1 4.5 12.3
°H / Li,appm (desired) | 31,000 | 22,000 | 9,300 | 19,000 | 14,300 | 4,900 4,500
°H / Li,appm (limit)** | 17,400 | 17,400 | 17,400 | 34,450 | 34,450 | 75,700 | 75,700
Kp*** 0.0136 | 0.0136 | 0.0136 | 0.0197 | 0.0197 | 0.0294 | 0.0294
*H, leakage 4.9x107 | 4.9x10” | 4.9x10 | 2.0x10° | 2.0x10° | 8.9x10° | 8.9x10®

* Partial measurement of post-test tritium levels. Some tritium remained in solid residues.

** Solubility limit of H in Li.

***K , IS the tritium distribution coefficient between the liquid lithium and the vanadium alloys.

Batielle

U.S. Department of Energy
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DHCE-1 3He Data
Capsule

4D1 4D2 5E2 5D1 5E1 5C1 5C2
Calculated *He 10.1 10.1 5.38 14.2 10.0 4.55 4.34
V 8.83 15.2 2.54 31.6 12.3 10.4
V-5Ti 18.0 12.2 3.05 19.2 7.19 8.10
V-5Ti (BL46) 15.5 8.59
V-5Cr 6.45 3.35 26.3
V-5Nb 7.65 6.78 5.70
V-5Mo 9.81 3.56 8.22
V-5Mo 5.02
V-3Ti-1Si 34.7 5.02 6.25
V-4Cr-4Ti (BLA47) 11.6 9.04 2.46 14.0 5.51 8.02 6.80
V-4Cr-4Ti (ANL) 9.86 20.9 2.48 14.1 5.58 7.90 74.0
High *He Alloys
V-1Si 105 59.9 48.8
V-5Fe 80.6 34.9 93.4
V-5Cr-5Ti(Si,ALY) 177 108 260

U.S. Department of Energy
Ba“e“e Pacific Northwest National Laboratory



Main Conclusions from DHCE-1

= Experiment did achieve accelerated He/dpa levels of 0.3 to 1.0
for most alloys

= Most alloys below fusion He/dpa ratio of 4-5 since K, lower
than expected for most alloys

= Data on most alloys reasonably well fit (factor of 2) by present
model of K, and tritium leakage

= Hydrogen solubility limit needs to be considered

= Three alloys showed much higher 3He, V-1Si, V-5Fe, and V-
5Cr-5Ti (S1,Al,Y) (He/dpa = 3-18)
» Possible explanations: hydride formation, tritium trapping at voids for
alloys that swell (V-Cr, V-Si, V-Fe)
= Tritium leakage may be overestimated at 600°C since more
SHe in samples than calculated

U.S. Department of Energy
Ba“e“e Pacific Northwest National Laboratory



Ongoing Experiments & Modeling



Summary of Planned US/Japan Irradiation
Experiments

= Predominantly US/Japan collaborative irradiation capsules
* Smaller efforts using informal EU collaborations and HFIR rabbit capsules

= DOE/JAERI Phase |V fusion materials collaboration

* Focus is on deformation and fracture behavior of ferritic steels (and other alloys),
including He effects

* Three HFIR target capsules (~25 cm3 volume each; 10, 40dpa, 300/400/500°C

* Two HFIR RB* capsules: with, without Eu shielding (~200 cm3 volume each),
6dpa, 300/400°C

* Typical irradiation matrix: tensiles, fracture, DFMBs

= DOE/MEXT JUPITER-II “ALIVE” capsule

* Focus is on deformation and fracture behavior of V alloys, including irrad. creep
* Eu-shielded HFIR RB* capsule, 450/600/700°C

= DOE/MEXT JUPITER-II HFIR PT-rabbit and RB* capsules

* Focus is on radiation effects in 3rd-generation SIiC composites (and other
materials at 600-1400°C, dpa

* Tensile, fracture toughness, thermal conductivity

U.S. Department of Energy
Ba"e“e Pacific Northwest National Laboratory



Ongoing and Planned Thermal Creep Studies

= Long-term tests in Li planned to develop more complete data
base

= Long-term tests in vacuum at low-stress to explore transition
in stress exponent

= Investigation of the affect of metallurgical variables:
* Characterize NIFS Heat-2 creep tubing
* Effect of grain size on creep properties
* Alternative heat treatments to render interstitial impurities benign at
low-temperature and also create obstacles to dislocation motion at
high-temperature
= Real-Time Helium Doping Experiment

* He, Li, Thermal
* Major impediment - funding required

U.S. Department of Energy
Ba“e“e Pacific Northwest National Laboratory



What Needs to Be Done?



What Needs to be Done?

= Thermal creep

* Alternative compositions and microstructures (heat
treatments) for improved performance

= |rradiation creep
* Lack of data at any dose

* Effect of alloy composition and heat treatment on irradiation
creep

* Creep-swelling coupling effects
= Helium effects
* Effect of He on creep and creep-rupture
* Remaining uncertainties associated with DHCE-1
* Optimal 2" phase microstructure for He trapping

U.S. Department of Energy
Ba“e“e Pacific Northwest National Laboratory



