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Outline

Thermal creep data base and ongoing experiments

Irradiation creep data base and planned 
experiments

Creep-swelling interactions

High-temperature helium embrittlement

Swelling data base



U.S. Department of Energy
Pacific Northwest National Laboratory

Deformation Mechanism Map for V-4Cr-4Ti

Zinkle and Lucas

Ý ε = 10−8s−1,  L = 20µm
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Diffusion-Controlled Creep Mechanisms
Murty, Mohamed and Dorn, 1972
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Temperature Dependence of Creep Rate in 
Pure Vanadium
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Stress Dependence of Creep Rate in Pure 
Vanadium
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Stress Dependence of Creep Rate in V-Ti 
Alloys at 700 and 800°C
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Stress Dependence of Creep Rate in V-Cr-Ti 
Alloys Between 600 - 800°C
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Effect of Oxygen on Creep Rate of Vanadium
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Purification of NIFS Heat-1 by Zr-treatment
• Decreased yield stress and UTS at high temperature
• Supression of dynamic strain aging behavior at 700°C

The effect of interstitial impurities on the mechanical 
properties of V-4Cr-4Ti alloys is eliminated at the 20 wppm
level.
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Dependence of Creep Rupture Time on 
Oxygen Concentration
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Even though creep rupture time is extended, oxygen can severely embrittle vanadium.



In a Lithium Environment, Oxygen is Removed 
From Vanadium
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Experiments Needed to Separate the Effects of 
Irradiation and Environment

1.  DHCE -- Irradiation, He, Li, Thermal

2.  RTHD (Real-Time Helium Doping)
-- He, Li, Thermal

3.  LTCE (Li Thermal Creep Experiment)
-- Li, Thermal (low oxygen)

4.  Thermal Creep Experiment
-- Thermal effects (oxygen increases)
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Thermal Creep Experiments

Characterize the thermal creep behavior of vanadium alloys from 
650°C to 800°C at effective stress levels below yield

Elucidate fundamental mechanisms controlling creep behavior of 
vanadium alloys

Three experimental studies:
• Biaxial creep tests in Li (ORNL)
• Uniaxial creep tests in vacuum (ANL)
• Biaxial creep tests in vacuum (PNNL)
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Creep Matrix in Vacuum

Pressurized tubes: 4.57 mm diameter x 25.4 mm long of V-4Cr-
4Ti and V-3Fe-4Ti (PNNL)
Flat tensile specimens of V-4Cr-4Ti: 19 mm x 4.5 mm x 1 mm 
gauge section (ANL)
Round tensile specimens of V-4Cr-4Ti: 2.54 mm diameter x 19 
mm long (ANL)
Temperatures:  650, 700, 725, 800°C
Stresses:
650 700 725 800°C
175-335 67-159 150-200 26-137 MPa



Creep Matrix in Lithium

Pressurized tubes of V-4Cr-4Ti, 4.57 mm diameter x 25.4 mm 
long to match vacuum tests (ORNL)
Temperatures:  665, 765, 800°C
Stresses:
665 765 800°C
59-117 25-84 30-100 MPa
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Time Dependence of Effective Creep Strain at 
650 and 725°C for V-4Cr-4Ti
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Time Dependence of Effective Creep Strain at 
800°C for V-4Cr-4Ti
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At 665-700°C strains are very small, but the trend of higher 
creep rates is again shown. Some primary creep is suggested.

Effect of Li on Creep at 665-700°C
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Effect of Alloy Purity and Cr Content on 
Creep of NIFS Heat-1
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Stress Dependence and Activation Energy for 
Creep
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Creep-Rupture of Vanadium Alloys
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Creep Rupture in Lithium
A Larson-Miller presentation shows that failure in Li occurs slightly prior to vacuum tests.

P=T (log tr + 20)/1000
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Effect of Increased Purity and Cr Content 
on Creep Rupture

Fukumoto, et al.
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• Increasing Cr level improves creep resistance
• Lowering interstitial levels degrades creep performance 
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Summary of Thermal Creep Tests
The normalized secondary creep rate (εkT/DGB) is power-law dependent 
on stress with n ~ 4 at normalized stresses (σ/G) greater than ~2x10-3

The activation energy, Q, for creep at 700 - 800°C is ~ 300 kJ/mole which 
is similar to the self diffusion activation energy for pure vanadium
The predominant creep mechanism appears to be climb-assisted 
dislocation motion at normalized stresses (σ/G) greater than 10-3

The creep mechanism may change at lower stresses where the stress 
exponent is near unity
The creep rates from tensile samples are several times greater than creep 
rates from pressurized tubes reflecting the differences in oxygen 
concentration
Consistent with low-oxygen and lower strength, creep rates in Li are lower 
than those in vacuum
Higher levels of Cr improve creep resistance but increased purification 
degrades creep performance
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Irradiation Creep - Phenomenological 
Description

Orders of magnitude increase in 
creep strain during relatively low-
temperature irradiation
Degree of creep enhancement is 
greatest at low temperature, 
decreasing as the thermal creep 
regime is approached
Constitutive equation: 
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Stress Dependence of Irradiation Creep in the 
Absence of Swelling
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Irradiation creep exhibits a 
linear stress dependence 
over a limited stress range 
that is temperature 
dependent
Similar behavior for FCC and 
BCC stainless steels
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Creep-Swelling Coupling
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Limited Irradiation Creep Data on Vanadium 
Alloys 
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Mechanical Property Degradation Due to He
Above 0.5 Tm , the coalescence of cavities at 
GBs can result in intergranular fracture
The life time under creep and creep fatigue 
conditions is dominated by the time of stable 
gas driven growth of bubbles on GBs  (rather 
than by gas driven growth of intergranular
cracks
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Effect of Strain Rate
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Effect of He on Tensile Properties of
Vanadium Alloys
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Overview of DHCE Concept

Goal is to simulate fusion reactor He/dpa for V alloys
Specimens are immersed in Li
Initial tritium loaded into mother alloy
Tritium equilibrates with Li/V system when the irradiation 
starts and the temperature rises
Tritium in V decays to 3He
Tritium loss due to decay and diffusion can be replaced by 
generation from 6Li
Ideally the He/dpa rate is nearly constant at the desired 
fusion rate for the entire experiment
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DHCE-1 Design Parameters

Capsule 
Parameter 4D1 4D2 5E2 5D1 5E1 5C1 5C2 
DPA 25 27 13 14 18 18 14 
Temperature, °C 430 430 430 500 500 600 600 
6Li fraction 0.05 0.045 0.01 0.065 0.01 0.08 0.08 
Initial Tritium,Ci 99 70 26 74 57 16 18 
Final Tritium,Ci 90 66 22 55 37 8.7 10.4 
Post-test Tritium, Ci* 46.3 38.4 3.4 ND ~24.1 4.5 12.3 
3H / Li,appm (desired) 31,000 22,000 9,300 19,000 14,300 4,900 4,500 
3H / Li,appm (limit)** 17,400 17,400 17,400 34,450 34,450 75,700 75,700 
 
KA*** 0.0136 0.0136 0.0136 0.0197 0.0197 0.0294 0.0294 
3H, leakage 4.9x10-9 4.9x10-9 4.9x10-9 2.0x10-8 2.0x10-8 8.9x10-8 8.9x10-8

 * Partial measurement of post-test tritium levels.  Some tritium remained in solid residues.
** Solubility limit of H in Li.
***KA is the tritium distribution coefficient between the liquid lithium and the vanadium alloys.
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DHCE-1 3He Data
Capsule

4D1 4D2 5E2 5D1 5E1 5C1 5C2
Calculated 3He 10.1 10.1 5.38 14.2 10.0 4.55 4.34

V 8.83 15.2 2.54 31.6 12.3 10.4
V-5Ti 18.0 12.2 3.05 19.2 7.19 8.10
V-5Ti (BL46) 15.5 8.59
V-5Cr 6.45 3.35 26.3
V-5Nb 7.65 6.78 5.70
V-5Mo 9.81 3.56 8.22
V-5Mo 5.02
V-3Ti-1Si 34.7 5.02 6.25
V-4Cr-4Ti (BL47) 11.6 9.04 2.46 14.0 5.51 8.02 6.80
V-4Cr-4Ti (ANL) 9.86 20.9 2.48 14.1 5.58 7.90 74.0

High 3He Alloys
V-1Si 105 59.9 48.8
V-5Fe 80.6 34.9 93.4
V-5Cr-5Ti(Si,Al,Y) 177 108 260
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Main Conclusions from DHCE-1

Experiment did achieve accelerated He/dpa levels of 0.3 to 1.0 
for most alloys
Most alloys below fusion He/dpa ratio of 4-5 since KA lower 
than expected for most alloys
Data on most alloys reasonably well fit (factor of 2) by present
model of KA and tritium leakage
Hydrogen solubility limit needs to be considered
Three alloys showed much higher 3He, V-1Si, V-5Fe, and V-
5Cr-5Ti (Si,Al,Y) (He/dpa = 3-18)

Possible explanations: hydride formation, tritium trapping at voids for 
alloys that swell (V-Cr, V-Si, V-Fe) 

Tritium leakage may be overestimated at 600°C since more 
3He in samples than calculated



Ongoing Experiments & Modeling
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Summary of Planned US/Japan Irradiation 
Experiments

Predominantly US/Japan collaborative irradiation capsules
• Smaller efforts using informal EU collaborations and HFIR rabbit capsules

DOE/JAERI Phase IV fusion materials collaboration
• Focus is on deformation and fracture behavior of ferritic steels (and other alloys), 

including He effects
• Three HFIR target capsules (~25 cm3 volume each; 10, 40dpa,   300/400/500˚C
• Two HFIR RB* capsules: with, without Eu shielding (~200 cm3 volume each),

6dpa, 300/400˚C
• Typical irradiation matrix: tensiles, fracture, DFMBs

DOE/MEXT JUPITER-II “ALiVE” capsule
• Focus is on deformation and fracture behavior of V alloys, including irrad. creep
• Eu-shielded HFIR RB* capsule, 450/600/700˚C

DOE/MEXT JUPITER-II HFIR PT-rabbit and RB* capsules
• Focus is on radiation effects in 3rd-generation SiC composites (and other 

materials at 600-1400˚C,  dpa
• Tensile, fracture toughness, thermal conductivity
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Ongoing and Planned Thermal Creep Studies

Long-term tests in Li planned to develop more complete data 
base
Long-term tests in vacuum at low-stress to explore transition 
in stress exponent
Investigation of the affect of metallurgical variables:
• Characterize NIFS Heat-2 creep tubing
• Effect of grain size on creep properties
• Alternative heat treatments to render interstitial impurities benign at 

low-temperature and also create obstacles to dislocation motion at 
high-temperature

Real-Time Helium Doping Experiment
• He, Li, Thermal
• Major impediment - funding required



What Needs to Be Done?
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What Needs to be Done?
Thermal creep
• Alternative compositions and  microstructures (heat 

treatments) for improved performance
Irradiation creep
• Lack of data at any dose
• Effect of alloy composition and heat treatment on irradiation 

creep
• Creep-swelling coupling effects

Helium effects
• Effect of He on creep and creep-rupture
• Remaining uncertainties associated with DHCE-1
• Optimal 2nd phase microstructure for He trapping


