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Fusion Materials Compatibility Research

» Why recent focus on V alloy oxidation kinetics:

— Chemical compatibility of vanadium with Li, Pb-Li is already sufficiently
understood (capsule tests and limited loop tests; additional loop testing would
be required before proceeding to detailed reactor design)

— Can V alloys be used with non-Li reactor coolants (Pb-Li, Sn-Li, He, etc.), where
pickup of entrained oxygen is an issue

— Since V has a large affinity for oxygen, pickup is controlled by kinetic factors
rather than thermodynamics

* Capsule compatibility tests for SiC/Pb-Li at 800-1000°C are scheduled
to begin in early FY02 (feasibility issue for alternative blanket system
identified in fusion design concept program)

* Mo/W oxidation analysis (funded by APEX)



Oxygen and Hydrogen Interactions with V-Base Alloys

Objectives

* Evaluate the mechanisms for oxidation of V-(4-5)Cr-(4-5)Ti
alloys in oxygen pressures in the range of 10-¢ to 10° Pa at
temperatures in the range 350-700°C

o Establish the microstructural characteristics of the materials
after oxidation

* Develop oxidation models to describe the role of oxygen
partial pressure in the environment, oxygen concentration in
the alloy and oxidation rate on the tensile properties of the
alloys

* Determine the threshold oxygen pressure for crack initiation
and establish the cracking propensity for the alloys in
oxygenated environments

* Determine the solubility of hydrogen in V-Cr-Ti alloys and
evaluate the effects of hydrogen on their mechanical
properties



Oxidation of V-Alloys at intermediate P, exhibits
parabolic Kinetics
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Oxidation of V-Alloys at Intermediate Po,

Oxygen pressure | Temperature Oxides identified
(Pa) (°C) by XRD
6.6 104 500 V03, V4010
700 V02, V1503, CrV904
6.6 1072 600 V03, V04, CrVOy
700 V09, V904, CrVOy
133 600 V09, V904
700 V09, V904, CrVO4
1x10° 315 V705, V903, V307
600 V70s, VzTigog, V0

Surface oxides identified on V44
Alloy after exposureto low-P
OXygen at varioustest temperatures
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Reaction Chamber used for low pressure oxidation
studies (AL, O, tube, base pressure 10-7 Pa)
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At low oxygen pressure, refractory metals do not form a
protective external oxide; oxygen is absorbed internally

Severe
embrittlement
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Mechanistic Explanation

} o
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low O levels near surface saturated surface oxide layer
gas phase limited diffusion limited diffusion limited
(linear) (parabolic) (parabolic)

It islikely that all 3 mechanisms are occurring with V-4Cr-4Ti at 600°-700°C
Linear kinetics change to parabolic kinetics as O level in alloy increases
Linear regime is most relevant for design, otherwise V-4Cr-4Ti is embrittied!



Tensile Elongation Decreases Rapidly with Oxygen Uptake
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Surface oxide in V Alloys is not Protective (2000h, 700°C)
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Surface oxide microstructure on V-4Cr-4Ti
after 200h at 500<C in air
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Analytical Microscopy of Denuded Zone
Parallel electron energy loss spectroscopy (PEELS)

1434ppmw O added at 500%C, no 950 amneal

Ti-rich axide particles
at grain boundaries

Grain boundary region
otherwise depleted in Ti
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Dependence of the V Alloy Crack Growth Rate on
Stress Intensity Factor
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Hydrogen Solubility in V-4Cr-4Ti Alloy

Solubility data for H in V-Cr-Ti alloys provides basis for evaluation of
H and T distribution in candidate first-wall/blanket systems

* D & T in plasma
* T generation in blanket
* H transmutation

* Quantitative adsorption/ desorption
of H into flowing He with controlled
H content at constant temperature

— Avoids problems of H
redistribution during cooling

— Optimized parameters for V-H
system
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High-Temperature Oxidation of
Refractory Alloys

> At Normal temperatures and pressures, the c Calculated W Oxidation Rates
: : : . xperiment at Z,,'=1.2x10" cm " s
chemical reaction of agas with the solid
generally results in condensed products. o5
> At high temperaturesand low pressures, 50 atm helium, 0.1ppm O2
the formation of volatile productsis S o0l /
thermodynamically favored over the £
growth of the condensed phase. g ;
» The upper temperature limit for design s O
with refractory metals with a helium §
coolant will be influenced by the formation | § 10 [
of volatile oxides. %
> Determine the upper limit of g L Experimental
Oxygen impurity levelsfor W/He o
designs using Thermodynamics of [
Chemical Reactions. U0 t6m 2000 o800 3000 8800
Temperature (K)

Funded by APEX program, OFES



Effects of Boundary L ayerson
Evaporation Rate of Refractory Oxides

Use of quasi-equilibrium treatment of
heterogeneous reactions, plus boundary layer
effects to determine the actual evaporation
rates.

Based on experimental data, the impingement
rate of O, was used to determine:

» Static Evaporation Rates.

» Effects of the Boundary Layer Resistance
To Oxide Product

Evaporation Rates Could Be As Low As
0.1 pm/yr for W at 1 ppm O, @ 1500°C.

For an oxidation rate limit of 0.1 um/yr the
operating temperature for W is 1600°C.

Funded by APEX program, OFES
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Overview of Fusion Materials Joining Research

* Recent focus has been on V alloy joining (GTA, ebeam, laser)
— Critical issue for viability of V alloys in fusion reactors

—Need to understand environmental (atmosphere) requirements for
successful welds; eventually progressing to field welds

* Analysis of potential for welding Group VI refractory alloys
(Mo)--what are the microstructural factors leading to weld
embrittlement

* Friction Stir Welding offers potential for significantly
enhancing the weldability of refractory and irradiated (He-
containing) materials



GTA Welding produces an increase in the DBTT due to
introduction of interstitial impurities from the
atmosphere and re-solution of existing Ti(O,C,N)
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Physical Metallurgy of Welded V-4Cr-4Ti

Isochronal Annealing Investigation of the Electrical
Resistivity and Hardness of V-4Cr-4Ti GTA Welds
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* Precipitation of Ti(O,C,N) by post-weld heat treatment (T, ~900°C)
can restore weld ductility and reduce DBTT



Physical Metallurgy of Welded V-4Cr-4Ti

* Microstructure of welded V alloys
— Twinning, precipitates (structure and composition)
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Precipitates in the fusion zones Twins were observed in V-4Cr-4Ti
following 950°C, 2h heat weld metal, particularly in outgassed
treatment were identified as samples (no PWHT)

Ti1603N3C2



The fusion materials welding program has successfully
resolved one of the key feasibility issues for V alloys
W e U et 2

Ry A
E.l =t i

200 |

| GTA welds (no
L heat treatment)

DBTT (°C)

5y

o

o o
L] I L] L]

100 |

-200 /////////ﬁéiiﬁiniﬁ ////////A/

1992 1994 1996 1998 2000 2002
Year

Success is due to simultaneous control of impurity pickup, grain size

— Results are applicable to other Group V refractory alloys (Nb, Ta)
— Use of ultra-high purity weld wire may reduce atmospheric purity requirements




Laser Welding and Heat Treatment of
Vanadium Alloys
Objective:

- Evaluate potential of laser welding for joining V-base alloys.
* Determine effects of weld parameters on properties of weldments.

 Evaluate microstructural modification and fundamental characteristics of
V-alloys by heat treatments with laser (small specimen technology).

Features of Laser-Welding

* Flexibility for in-field and large-component welding.
* Automatic remote welding.

 Simplicity for atmospheric control.

* Small weld/heat affected zone.

» Simple preparation of weld joint.

Laser Heat Treatment

» Use of laser beam for fundamental investigations of thermal treatments
on microstructure and properties.

* Use of defocused beam for heat treatment.
* Variation of heat treatment with same composition.
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Overview of Laser Welding
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Schematic showing the set-up of the laser and welding
environmental control system

* Simple air purge in flexible
atmospheric containment adequate to
avoid contamination.

* Applicable to field work.

h
Shielding gas
in

* Simple butt weld with full penetration
(4 mm).

e Chemical analysis of weld zone indicates
no oxygen contamination.

* No banding structure in weld region.



Charpy Impact Energy, J

e Laser Weld VACrATi ps104 * Major alloying composition of two
G SC T AR heats and heat treatment similar.
10 L e A E

* Significant difference in trace
----- - element composition Si, Al, O, Mo,
Fe.

* These results along with
; microstructural examination
""" » provide insight into V-alloy
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e Current effort is focused on
identification of trace elements

 Charpy Impact Energy for contributing to large property
laser welds from two heats of difference.
V-4Cr-4Ti.

e Charpy Impact properties of
base metal from both heats
show same DBTT < -200°C

(similar to NIFS-1 weldment).



Net-intensity X-ray maps of second-phase particlesin base metal of Heat
NIFS-1: (a) C-Ka map, (b) Ti-Ko map, () V-Ka map, (d) Cr-Ko map.
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(a) SEM image of Heat NIFS-1 showing (a) etched grain boundary
morphology. High-resolution SEM images showing small particles
(50-100 nm) at (b) grain boundary | and (c) grain boundary Il in Fig.

(a).
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NIFS-1: particle size -> 50-100 nm 832665: particle size -> 10-20 nm

High-resolution SEM images showing a significant difference
between (a) heats NIFS-1 and (b) 832665 on particle sizes at grain
boundary.



Atom Probe Tomography Reveals Zr, B and C Segregation
to Grain Boundaries Produces Improved Mo Weldments

B, Zr (and C) segregation inhibits O embrittlement of grain boundaries
—E,,,~20%, transgranular fracture mode instead of typical e, ,~3%,
intergranular fracture for Mo welds

*Bulk alloy composition: 1600 appm Zr, 96 appm C, 53 appm B, 250 appm O

BASE METAL HEAT AFFECTED ZONE
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Research performed by
M. K. Miller, Oak Ridge National Laboratory
and A. J. Bryhan, Applied Materials



Motivation for pursuing Friction Stir Welding (FSW)

* A solid-state joining process such as FSW may enable field welding
of refractory alloys (V, Mo, W), due to reduced pickup of atmospheric
contaminants

* [rradiated materials with He contents above ~1 appm cannot be
fusion-welded due to cracking associated with He bubble growth; the
lower temperatures associated with FSW may allow repair joining of
irradiated materials

Calculated size of He bubbles
at grain boundaries in 316 SS
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Cracking in the heat-affected zone of GTA welds in He-containing

SS 1s associated with He bubble formation on grain boundaries
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Aluminum metal matrix composites can be successfully
joined with friction stir welding (FSW) process

* Metal matrix composites (MMC) are difficult to join using conventional fusion
welding processes.

— Particle / fiber reinforcement deteriorate due to melting.
— In Al-SiC MMC laser welds, SiC decomposes and forms Al,C; carbides.

0 . 0 0 i ol FSW
* Friction stir welding (FSW) 3 _ ) 2
0 . o 1o . 2] N F = - i o i~
uses plastic deformation to join #*Sas . 6 e ot O S
. e L -FEW-11 1 &= B
materials. i3
— Homogeneous microstructure
and properties are achieved. s bt
L =l

— SiC fibers were uniformly
distributed.

» Sponsor: DOE Office of Transportation Technologies
Olffice of Heavy Vehicle Technologies



Modeling of friction stir welding (FSW) process for

fusion energy applications

* Background

— FSW is a newly developed solid-state
joining process for potential application to
materials that are considered difficult to
join by conventional fusion welding
processes

* Goal

— To develop process model for FSW for
predicting the temperature and flow fields

Fringe Levels
— To apply the process for joining vanadium

alloys and dispersion strengthened steels

1.158e+00
9.365e-01 I
7.154e-01 |

4.943e-01 _

* Progress

273e-M _

— FSW has been made on a model alloy and
temperatures were measured in different
locations for computational model
development and validation

2.200e-02
-1.691e-M ]

=3.903e-01
-6.114e-01
— Efforts are underway to model the :ZZ::;

kinematics of the process using the finite
element code LS DYNA - 3D

Predlcted dlsplacements
along the tool axis



Conclusions

e Extremely low oxygen partial pressures (<10-10 Pa)
are required for non-lithium coolant blanket systems
involving V alloys (in order to avoid embrittlement)

* High-quality welds with DBTT values approaching that of
the base metal can be obtained in V alloys without any
requirements for post-weld heat treatment

— GTA, laser, electron beam techniques

* Friction stir welding offers potential for further
improvements in field-welding capability of refractory alloys
(and other alloys), and may improve the ability to perform
repair welds on neutron irradiated (He-containing) alloys



