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Presentation overview

•  Cascade aging objective:

Model the long-term defect, solute & impurity evolution

•  Kinetic Monte Carlo & cascade aging examples

•  Molecular Dynamics/KMC model of vacancy cluster evolution &

   MD simulation of defect-dislocation interactions in Cu

•  Summary of recent progress
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Objective: cascade aging



Kinetic Monte Carlo (KMC)

•  KMC: stochastic, atomic-scale model to simulate the time-evolution

   of defects and nano/microstructural evolution - focus on individual

   defects, not on atomic vibrations

•  Probabilities/reaction rates for any given event (defect/cascade

   introduction, diffusion, clustering, dissolution, recombination, …)

   obtained from i) probability lookup tables, or ii) interatomic

potentials coupled with transition state theory

•  Events chosen at random - sets the timescale

•  March forward in time



Set reaction rates for all events

Pick an event
Pick a particle

Update time = -log(rand)/P

Jump rates
Forward reactions
Backward reactions
Cascade introduction

Set total probability, P
Select random event

0          rand*P

Do the event

The End

Total time/dose

Spontaneous events

P

• kinetic-Monte Carlo (k-MC) includes point
  defects, defect clusters, and impurities
• Initial defect positions are taken from
   MD simulation results
• Defects are picked according to probabilities
   based on their

• kinetic-Monte Carlo (k-MC) includes point
  defects, defect clusters, and impurities
• Initial defect positions are taken from
   MD simulation results
• Defects are picked according to probabilities
   based on their  diffusivity:
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KMC examples

•  Intra-cascade recombination in Cu

•  Defect-reaction kinetics (1-D diffusion)

•  Vacancy cluster formation in Fe** -> link to rate theory

** example from RPV embrittlement

•  Damage accumulation in Cu (Coupled MD/KMC)



SHORT-TERM ANNEALING OF
ISOLATED 25 keV CASCADES IN Cu
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Intra-cascade annealing in Cu

KMC simulations of annealing
individual cascade regions show
the fractions of defects
produced  in a cascade that

•survive recombination
•escape the cascade region
•form stable, sessile clusters

as a function of temperature

!The large fraction of escaping vacancies at high temperatures corresponds with
the experimentally observed temperature dependence of void swelling.

What happens to the cascade defects long after the first 10 ps?
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Defect reaction kinetics  for  1-D cluster migration

MD simulations show that SIA clusters formed in
cascades migrate in 1-dimension with occasional
directions changes

1-D cluster migration requires a new reaction
kinetics

KMC �thought experiments�
are perfectly described by  a
new analytical theory for
reaction kinetics from 1-D to
3-D.

The new reaction kinetics is
incorporated into the new
Production Bias Model of
microstructure evolution
(Singh, Woo, Trinkaus,
Foreman, Golubov)

KMC �thought
experiments�

!Defects migrating by
mixed 1-D/3-D with the
same L, interact with �
!Random field of
absorbers of radius R,
number density N
!�Sink strengths� k2 are
determined from the
defect lifetimes as a
function of L

L

Mixed 1-D/3-D migration, average
1-D segment length L

Sink strength as a function of 1-D segment length.
Analytical expression compared to KMC results
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• MD database of displacement cascade primary defect production

• Short-time (~100 ns), “Defect” kinetic Monte Carlo to allow additional
  recombination & SIA/SIA cluster migration away from the cascade

• Kinetic lattice Monte Carlo (KLMC) using a embedded-atom method 
  potential to track the vacancy/vacancy cluster fate

– Generate ‘long-time’, cascade-aged defect (vacancy cluster)
 production cross-sections - input to rate theory

Cascade aging approach (RPV embrittlement)
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KLMC results, 50 keV cascade in Fe at 563 K

• Rapid
  formation of
  3-D clusters

• Small clusters
  are mobile and
  cluster growth
  often involves
  coalescence

Vacancy cluster evolution movie
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• Large number (> 40) of
  Cascade Aging simulations 
  using 20, 40 & 50 keV 
cascades:

  - mean dissolution lifetime
  - time dependent vacancy
     cluster (aged) source term

Mean vacancy cluster dissolution time
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• Experimental observations of irradiated Cu reveal that majority of
   defects (~90%) are stacking fault tetrahedra (SFT)
   SFT mean size ~ 2.5 ± 0.5 nm

• Coupled MD/KMC approach:
   - MD simulations of SFT formation
   - KMC simulations of damage accumulation

• MD simulations of dislocation - SFT interactions

Damage accumulation in Cu



Stacking fault tetrahedra (SFT) formation

• SFT formation mechanism in 
  low-stacking fault energy FCC 
  metals revealed by atomistic 
  modeling (EAM-type potential)

Frank partial
   a/3<111>

Schockley partial
     a/6<121>

stair-rod partial
      a/6<110>

initial 0.5 ps 0.7 ps 0.9 ps 1.1 ps



SFT formation under irradiation

• MD simulations of the vacancy 
  configurations produced in high 
  energy displacement cascades 
  reveal truncated SFT formation 

Perfect SFT

Truncated SFT Overlapping, truncated SFT



Damage accumulation in Cu

Excellent agreement between KMC predictions and experimentExcellent agreement between KMC predictions and experiment
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•  KMC input: primary damage cascades (MD), 1-D interstitial cluster 
   migration, SFT formation, defect cluster binding and diffusion energetics

•  KMC predictions: > 90% observable defects are SFT, defect number 
   density and mean size 
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(1010 Pa)
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c44: 8.23
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• Dislocations inserted and
equilibrated at 100 K,
SFT (and overlapping SFT)
inserted (above, below and
on the glide plane) and
shear stress applied to move
the dislocations

Edge dislocation - SFT interaction (Cu)
•  Atomistic (MD) simulations of individual dislocation - obstacle
 interactions provide fundamental understanding of radiation 

   hardening and flow localization phenomena 



Dislocation - SFT interaction
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• 39 nm line - SFT crosses the glide plane
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Dislocation - SFT interaction (300 MPa)

near - <111> 
projection

• SFT is a 
relatively
strong obstacle
φ ~ 80°

• SFT sheared
but neither
absorbed or
destroyed

Dislocation - SFT interaction movie



Dislocation - truncated SFT interaction
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• 39 nm line - overlapping, truncated SFT crosses the glide plane

<110> projection
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Dislocation - truncated SFT (300 MPa)

Dislocation - truncated SFT interaction movie

near - <111> 
projection

• Truncated SFT 
   is absorbed

• Vacancy
   absorption 
   produces 
   super-jog 
   pairs 

• Dislocation
  bows around
superjogs



Summary

•  Importance of cascade aging to damage accumulation and microstructure
   evolution 

•  Kinetic Monte Carlo provides fundamental insight into cascade 
   aging processes, revealing
   - impact of 1-D interstitial loop on defect reaction kinetics
   - vacancy cluster formation mechanisms in Fe
       ->  link (delayed cluster production cross-sections) to rate theory models
   - accumulation of SFT in Cu with constant mean size

•  Molecular Dynamics simulations of dislocation-obstacle interactions 
    provide fundamental understanding of radiation hardening and flow 
    localization phenomena

• KMC/MD techniques are applicable to He-vacancy cluster
   evolution and dislocation - loop interactions relevant for fusion applications


