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Development of Current BCC Alloy Compositions

e Current alloy compositions evolved from strong U.S. leadership in
the development of reduced activation options for Tempered
Martensitic Steels (TMS) and Vanadium alloys

 Empirically-based development programs in the U.S., EU and
Japan have addressed wide range of issues

— reduced activation (safety, waste disposal)

— fabrication/joining

— mechanical behavior and thermophysical properties
— radiation damage and helium effects

— chemical compatibility and corrosion



Composition of Tempered Martensitic Steels(TMS)

* Current primary compositions have evolved empirically from
studies on a wide range of compositions

N USA EU Japan
2-9Cr-V 9Cr-W-V-TaN 2-15Cr-W

2-9Cr-W 12Cr-W-V-Ta-N 2-3Cr-W-V-Ta
2-12Cr-W-V 9-10Cr-W-V-TaTi-Ce 7-9Cr-W-V-Ta
9Cr-W-Mn  9Cr-W-V-Mn-Ti 11Cr-W-V-Ta

9Cr-V-Mn
12Cr-W-Mn
12Cr-V-Mn




Current Composition of US Program Model TM S

e Current compositions are all variants of the US-devdoped alloy
e 5000kg Heat of F82H is source of U.S. program model TMS

Designation Cr W V Ta Si Mn
USA 9C-2WVTa 9.0 2.0 0.25 0.07 0.03 0.60

Japan

JLF-1 90 2.0 020 0.07 0.08 0.65

EU  EUROFER 8.5 1.1 025 0.08 0.05 0.50




Composition of US Program Model Vanadium Alloy

 Model V-4Cr-4Ti, composition evolved empirically from US-led
studies covering awide range of compositions

Substitutional: Cr(0-20); Ti (1-15);
| (wit%)

Interstitial: C(50-100);  O(100-500); N(50-100)
(wt.ppm)

Si(0-1)




TMSand V alloysarethe Focus of International
Programs Co-ordinated through | EA Working Groups

e EU
— Largeprogramon TMS
— Materials engineering data base for 2010 DEMO
breeding blanket, Pb-Li and water-cooled options
— No technological interest in V
e Japan
— Programon TMS led by JAERI
— Materials engineering data base for 2015 DEMO,
Water-cooled blanket (SSTR)
— Program on V Alloysled by MONBUSHO
— Materials development phasefor aLi-cooled blanket (ARIES-RS)
e US

— Advancement of maerials science base for BCC modd structural
alloys; integrated theory/modding/experimental approach to resolve
feasibility issues, development of innovative materials



Operating Temperature Windows for Structural
Alloysin Fusion Reactors
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Critical Performance-Limiting
Phenomena in BCC Alloys

« Low Temperature Regime
— Radiation hardening and flow localization

— Hardening-induced shifts in fracture toughness transition
temperature

— Effects of helium and hydrogen generation on fracture
properties
 High Temperature Regime:

— Lossof creep strength in TM S due to recovery of martengte
structure

— Lossof creep strength in V-4CrOA4Ti; low barrier density
— Helium-induced swelling and grain-boundary embrittlement



Processing and Start-of-L ife Microstructure for F82H

* Processing
— Hot rolling in the austenite
range at 1200°C-1050°C
— Normalizing at 1040°C (fully
austenitic); martensitic
transformation on cooling;
tempering at 740°C (below Ac).
« Microstructure
— Prior austenitegrain size
~100y; lath packets/partially
recovered dislocation structure
precipitation of M,;Cy;
— Didlocation dengty ~5x10“m-2
— M,3C number density
~1x10°°m3




Processing and Start-of-Life
Microstructuresfor V-4Cr-4T]

e o ,  Processing
LR — 500kg ingot hot extruded at
1100°C

— Cold rolling and recrystallization
In the range 950°C-1050°C

— Primary globular Ti(OCN) phase
solvus temperature >1150°C

e Microstructure

— Ti segregation during ingot
solidification results in formation
of bands of Ti(OCN) during
extrusion

— Recrystallized grain size
20-30um; low sink strength
microstructure



Formation of Banded Microstructures
IN V-4Cr-4T]

GTA Weld Recrystallized at 1000°C




Sensitivity of Fracture Propertiesto SOL
Microstructures

Fracture properties of V-4Cr-4Ti strongly dependent on final
heat treatment conditions

— DBTT variations >200°C due to change in grain size and
Interstitia content

Fracture properties of TM S much less sengtive to SOL
microstructure

— DBTT variations 10°-50°C produced by variations in prior
austenite grain size and final tempering conditions.



Summary of Effect of Heat Treatment
and [Cr+Ti] Concentration on Impact Properties
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Deformation Map for Fe-BCr-2WVTa
Ferritic-Martensitic Steel
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Microstructural Stability in F82H

e Thermal

— Tempered martensite structure relatively stable up to 550°C
(5000h)

— Intermetallic L aves phase develops > 600°C after 10* hours
e |rradiation

— Lath, dislocation and precipitate structure relaively stable
during neutron irradiation up to 500°C

— Populations of a,<100> and (g,/2)<111> |loops arethe
principal source of hardening 100°C - 400°C

e Heium Generation

— Doping with Ni or B produces fairly uniform distributions of
helium bubblesvia (n,o!) reactions between °8Ni, 1°B and
thermal neutrons



Microstructure of F82H Irradiated to 5 dpa and
Tensile Tested at R.T.

Irradiated at 300°C Irradiated at 500°C
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Microstructure of F82H Irradiated at 400°C to 52 dpa
iIn HFIR
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Advanced Analytical Electron Microscopy
Techniquesare being used to
Examine Precipitatesin V alloys

Solute Segregation Was Detected in V-4Cr-4Ti Following
Neutron Irradiation to 0.5 dpa at Elevated Temperatures
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Cluster Density (m 9

Experimental investigation of stacking
fault energies of BCC metals
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Microstructural Stability in V-4Cr-4Ti

e Thermal
— Segregation of interstitials to dislocations beginning at
~200°C (static and dynamic stran aging)
— Precipitation of arange of plate shaped Ti(OCN) phase
700°-950°C
e |rradiation

— <110> faulted and <111> perfect interstitial loops primarily
responsible for radiation hardening 60°-350°C

— Ti-enriched <001> defects develop 300°-400°C; Ti-rich
oxycarbonitride plates devel op 400°-550°C
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Electrical Resistivity and Hardnessin V-4Cr-4T]
as a Function of Temperature
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 VVariations in electrical resistivity and hardness reflect mobility of
Interstitias and interactionswith Ti and provide information relevant
to DSA, recovery and recrystallization processes and precipitation
reactions
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Plate Formation on {001}
Habit in V-4Cr-4Ti

GTA Weld

- Ti15(O3N3C))

Oxidized

) Ti58.2(O12.8C24.1N4.9)

Neutron Irradiated

- Tl,90(OsN)<1p [NOC]




Dynamic Strain Aging in V-4Cr-4Ti

 Maximum in grain-rate sengtivity occursat 600°C
In V-4Cr-4Ti
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Magnified View of Serrated and Jerky Flow
Behavior in Vanadium
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e Estimate time for diffusion
of inter stitials

 Ssegregate to immobile
and mobile dislocations

* identify elements
responsible for DSA

e Calculate averagetime
between minima (t)

* 300°C and 10-3/s
T =~37.5s

» 200°C and 10-3/s
T=~129s

e Diffusivity calculations show:

» Carbon and oxygen are primarily responsible for DSA effect below 300°C
 Nitrogen has similar mobility at a higher temperature of 400°C



Strain Rate Sensitivity for V and V-4Cr-4Ti
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Yield Strength and Uniform Strain in Neutron-
Irradiated V-4Cr-4Ti
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Low-Temperature Radiation Hardening Causes a Large Increase in
the Ductile-to-Brittle-Transition Temperature in V-4%Cr-49%Ti Alloys
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Relationship Between Radiation Hardening and DBTT Shift
for V-4ACr-4Ti Irradiated in Various Reactors
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Radiation Hardeningin TM S

8Cr unirradiated

9Cr unirradiated

irrad., from literature
irrad., US/Japan prog.
fit to unirrad. data
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Stress - Strain Curvesfor Neutron Irradiated F82H
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Radiation Hardening-DBTT Shifts Relationship
for TM S Including Helium Effects
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Future Work

Investigation of performance limiting, radiation-induced
phenomena in modd alloys

— Broad portfolio of miniaturized property measurements and
characterization methods

— Fully integrated with theory/modeling activities

Fundamental 1ssues of flow and fracturein TMS and V-4Cr-4Ti
model alloys including helium efects at 300°-400°C

Fundamental issues related to helium migration, trapping and
bubble formation in TMS and V-4Cr-4Ti model alloys at
400°-650°C

Initial studies of dispersoid and nanocluster gability, helium
trapping in advanced alloys at 300°-800°C



Future Work

* |rradiation program to be carried out under a 5-year shared-cost
program with JAERI/MONBUSHO

— 5 Li-bonded small volume HFIR experiments
(25cm? specimens/capsule)

— Temperature monitored and controlled; neutron doses (1-10 dpa)
— Spectrally tallored and isotopically- doped to vary helium
production
e Continuing investigation of substitutional solute-interstitial
Interactions in V-4Cr-4Ti model alloy

— Immobilization of interstitids in uniformly-digersed
oxycarbonitride phases

— Improved creep srength and helium management
e EXxpanding upper temperature operating limitsof TM S
through nano-phase engineering



