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Material descriptions (constitutive, damage-failure)
σ(ε,ε’,T), Ke(T, ε’),... = fp(MVs, φt,Ti, dpa, He,...)

from empirically-calibrated microstructurally 
based multi-scale physical models and simulations 

Analytical tools: plasticity laws, structural 
failure assessment methods and codes

A Concurrent Strategy

Advanced multiphysics
(themalhydraulic/

inelastic stress…) FE 
codes for design, 

operation (ISI), safety 
and component lifetime

(benchmarks)

Performance 
maps

Advanced materials
 systems development
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Key Cross-Cutting Issues

• Fracture toughness for defect tolerant assessments of fast
fracture: irradiation embrittlement, role of He (if any),
compositional, microstructural, impurity effects?
- Master Curve (MC)-Shifts (∆T)Method
- experimental-computational macro-micromechanics,

     size effects, basic fracture mechanisms and models
• Constitutive-plasticity laws including irradiation hardening

and loss of uniform strain capacity.
- unified dislocation-based constitutive laws for bcc alloys
- multiscale nature of flow ‘localization’

• Implications to structural integrity and alloy development.



Irradiation Effects of V-4Cr-4Ti

Tirr = 200°C, 0.4 dpa 0.1 dpa



The MC-∆T Method
• Combinations of many variables control embrittlement - it is

prohibitive to ‘measure’ a huge number of toughness-
temperature K(T) curves - must use (very) small specimens.

• MC-∆T method measures a reference-temperature (To) with a
small number of small specimens for small family of fixed
Keff(T-To) curve shapes.

• Use Keff shapes and To shifts (∆To)  to account for loading rate,
irradiation, size and geometry, statistical effects and margins in
both testing and application.

• The ∆To can be independently measured,
assessed with tensile data and modeled.

• Specific to thin-fusion structures
(vs. heavy-section fracture mechanics).

RPV Steels



MC-∆T Method
• K(T-To) shape & ∆Ttot ≈ ∆Tirr+∆Trate+∆Tsize/geom+∆Tstat.+∆Tmarg

• Seek rigorous physical basis (limits) for MC-shape(s), size
effects (statistical and constraint mechanics), links of shape &
∆T to fundamental properties & microstructure (irradiated).

• Major progress and MC-∆T subject of international research
(irradiation studies include: US-Europe, US-JAERI, US-
MEXT)
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Micromechanical Models
• Models of cleavage combine σ(ε, ε’,T) in FE simulations

of crack tip σ-ε fields with local fracture properties (σ*-
A*/V* or σw, m) mediated by trigger particle micro-
structures & intrinsic ferrite toughness to treat:
- constraint-statistical (W, a/W, B) size effects
  (small specimens to structures) on K(T) and To

- loading rate and irradiation on ∆To [∆σ(ε) and ∆σ*]
- invariance of Kssy(T) for small scale yielding
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FE σ(ε)-σ*(A*) Model

FE - A(σn/σy, KJap) 

σ(ε, ε’,T) model

Cracked Body Geometry 

Micromechanics

A(σn = σ*, KJc/e) = A*

KJc/e

T

SSY
Constraint

K-correction

LSY
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MC Shape and Shift Model
• Shape Kssy(T-To) ≈ invariant and irradiation hardening ∆σy

induced ∆T consistent with if σ*(T) [prior assume ≠ f(T)].
• Magnitude of σ* depends on extrinsic trigger particle

(carbide) microstructure but macro T-dependence metered by
inherent ferrite (bcc lattice) micro-arrest toughness Kma(T).
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CM-FR
• Confocal-Microscopy Fracture-Reconstruction (CM-FR) first

proposed by Kobiashi refined and extended. Permits the
tomographic imaging of damage development leading to
fracture or rupture.  CM gives 3-D maps of deformed
conjugate fracture surfaces. FR overlaps and separates
surfaces to show the sequence of local material separation-
damage events. CM-FR provides
detailed information on damage
development (e.g., cleavage-
trigger or microvoid nucleating
particles), damage development
failure instability and  ductile
crack tearing. Crack opening and
angle are direct measures of
toughness.



He Effects on Fast Fracture
• Substantial controversy regarding possible effect of He on

fast fracture other than generally modest effect (at He
levels experienced) on ∆σy. Does high helium reduce σ*?
Available data indicating yes, no and possibly is all
confounded and/or too uncertain-limited to reach a real
conclusion. No known mechanism.
A systematic approach designed
for the US-JAERI experiment,
based on deviations from
expected ∆T-∆σy relation

• Example, subset of F82H-type
steels showing little effects of Ni
and B doping to produce high
He on the ∆T- ∆σy relation
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Other Fracture Issues
• Low ductile tearing intitiation and resistance, shear band

decohesion.
• Interstitial impurity effects (NIFS heat of 4Cr-4Ti).
• Toughness-strength optimization in advanced alloys such

as nanocomposited ferritics and higher strength-multiphase
V alloys.

• Non-hardening embrittlement mechanisms in both V and
Fe-based alloys and IG fracture (impurity-solute
segregation, phase/structural instabilities, H, damage).

• Subcritical crack growth (fatigue, envonmentally assisted).
• Realities of actual service: warm pre-stressing, shallow

surface flaws, multiaxial/mixed mode loading, dynamic
strain aging, creep relaxation.



Deformation
• Low-to-intermediate T irradiation results in substantial

hardening (∆σy) and even more significant loss of uniform
strain capacity (∆εu).

• The ∆σy and ∆εu are accompanied by varying degrees of
flow localization
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Constitutive Models

• Starting from a unified microstucture/dislocation mechanics-
based constitutive model σ(ε, ε’, T) for unirradiated bcc
alloys, develop a multiscale model for irradiated alloys,
ultimately incorporating results of atomistic and dislocation
dynamics simulations.

• Unirradiated σ(ε, ε’, T) for FMS
& V-4Cr-4Ti with activated flow
and dislocation production-recovery
treatments of strain hardening
are being integrated in a unified
and comprehensive bcc model
framework - including links to
microstructure and effects such
as dynamic strain aging.

V-4Cr-4Ti



Deconvoluting Localization Effects
• Isolate and properly integrate multiscale parts - and

determine what controls observables.

Microconstitutive
dislocation-obstacle
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Effect of σys and n on εu

• Robust and physically-based σ(ε, ε’, T)
σ(ε, ε’,T) = [σys(ε’,T) + σysa ] + σsh(ε,Τ) + H.O.T.

of great practical importance in FE studies and has
provided fundamental insight on processes leading to
irradiation effects on εu.

• Simple analytical model rationalizes
combined effect of  lower n and
higher σys on εu.

σfl(ε) = σys + κsh(ε/εys)n

εu
n-1 = [(σys εys

n)/κsh +εu
n]/n = 0
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Modeling the Tensile Test

• ABAQUS 1320 8-noded
brick elements on 4x1x0.2
1/8 symmetry plate using J2
incremental flow theory.

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

N
o

m
in

al
 S

tr
es

s 
F

/A
o
 (

G
P

a)

Nominal Strain, u/l
o

σ
y
=500 MPa

∆w/w=∆t/t=0.5 %

∆w/w=∆t/t=0.25 %

No defect

small defect

0

500

1000

1500

0 0.05 0.1 0.15 0.2
gr1pa/gr1ad

σ  (
M

P
a)

ε

σ
fl
=σ

y
+kε

P
0.32

σ
y
=460 MPa

σ
y
=500 MPa

1000

1250

750

0

500

1000

1500

0 0.05 0.1 0.15 0.2
N

om
in

al
 S

tr
es

s 
F/

A

o
 (

M
Pa

)

Nominal Strain, u/l
o

σ
y
=1250 MPa

σ
y
=500 MPa

σ
y
=750 MPa

σ
y
=1000 MPa



Strain Softening-Hardening

• Engineering s(e) data fit by σfl(ε) with a gradual yield drop
softening followed by hardening. Estimate of the minimum
∆σfl shows a persistence of irradiation hardening to high ε.
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Characterization of Necking Strains

• Combine confocal and optical microscopy for in-situ
tensile test imaging of necking and thinning to compare
with FEA results. Also interrupted/post-test examination.
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Implications of FE σ(ε)-s(e) Modeling

• Effects of irradiation on the s(e) curves can reproduced in
FE simulations using continuum, incremental flow (J2)
laws.

• The σ(ε) is controlled by a competition of initial softening
followed by modest hardening - significant irradiation
hardening persists to high ε.

• Role of micro-localization on macro constitutive behavior
may be modest, depending on the situation (if not shear
dominated?).

• Guide for MS-modeling and experiment (what to look for),
including compatibility micromechanics of localization,
dislocation dynamics, structure evolution with ε and the
local mechanics of defect softening.



Implications to Fusion Structures

• Structural ‘strength and ductility’ depends on both intrinsic
material and extrinsic factors related to size and geometry.
- large ∆σy are beneficial and low eu are detrimental, but -

   cases such as simple bending are not sensitive to eu, while
  shear dominated processes may be very sensitive.

 - effects of lower Keff by irradiation ∆σy depend on size
       and geometry - a material state that leads to elastic fracture

  (σ << σys) of a heavy-section pressure vessel may have
       little or no effect on the fracture stress and effective
       ductility of a thin structure with a shallow surface crack.
• An irradiated  structure can be effectively ‘stronger’.



Performance Maps

• Example - FE simulation of V-4Cr-4Ti bend bar.

• Objective - define functional material-structural metrics
that can map detrimental vs. beneficial changes stress and
strain or ductility capacity.
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Flow Localization - Fracture Interaction

• Lower mixed mode ductile fracture toughness - lead to
shear band decohesion in irradiated materials?

• Enhanced formation of microcracks (cleavage and IG) ) by
coarse slip bands - reduce σ*?
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