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� Mechanisms of plastic instabilities
� Plastic flow localization in irradiated materials
� Mesoscopic computer simulations & DD
� Dislocation interaction with defect clusters
� Radiation hardening &  embrittlement by flow 

localization
� Application to flow localization of irradiated 

copper and iron
� Fracture Toughness models
� Conclusions and future directions

Presentation OutlinePresentation OutlinePresentation OutlinePresentation Outline
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Title of Work: Plasticity and Fracture Mechanisms of Fusion Materials

Principal Investigator and Institution: Nasr M. Ghoniem (UCLA), Hussein 
Zbib (WSU), Brian Wirth (LLNL), G.R. Odette (UCSB), D. Edwards 
(PNNL), S. Zinkle (ORNL)

Overall Objective: Computer Modeling and mechanistic experiments of the 
main phenomena involved in plastic flow localization and associated 
fracture instabilities under irradiation. 

Technical Approach: (1) Dislocation Dynamics Modeling; (2) Experimental Data 
Assessment; (3) Mechanisms of failure models; (4) mechanistic experiments.

Accomplishments:
• Established the main mechanisms of dislocation-defect interactions;
• Developed new computational tools for simulations of plastic flow; 
• Established the main mechanism of plastic flow localization.
• Coordinated effort with the experimental program.

Relevance to OFES/Fusion: Mechanistic understanding of flow and fracture is 
essential to successful alloy development.

SUMMARYSUMMARYSUMMARYSUMMARY
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Technological Motivation Behind Technological Motivation Behind Technological Motivation Behind Technological Motivation Behind 
Mesoscale SimulationsMesoscale SimulationsMesoscale SimulationsMesoscale Simulations

(1) Exposure of pressure vessel steels in nuclear fission reactors 
leads to severe embrittlement affecting safety and economics.
(2) Irradiated metals in future fusion energy sources undergo plastic 
flow localization instabilities.

Flow LocalizationPlastic Instability
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Deformation Behavior in AsDeformation Behavior in AsDeformation Behavior in AsDeformation Behavior in As----irradiated irradiatedirradiatedirradiated
and Postand Postand Postand Post----irradiation Annealed Pure Cuirradiation Annealed Pure Cuirradiation Annealed Pure Cuirradiation Annealed Pure Cu
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Mechanisms of Plastic Mechanisms of Plastic Mechanisms of Plastic Mechanisms of Plastic 
InstabilitiesInstabilitiesInstabilitiesInstabilities

d h d S dσ ε ε= +     (log D )
Strain hardening rate Strain rate sensitivity

λ σ ε =   [( ) / ] D− h S

Stable Plastic Flow

Unstable Plastic Flow
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λ 0>
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for most applications.

@  High spatial & 
temporal  resolution.

Basic Equations of Differential Basic Equations of Differential Basic Equations of Differential Basic Equations of Differential 
Geometric Curved SegmentsGeometric Curved SegmentsGeometric Curved SegmentsGeometric Curved Segments
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Basic Equations of Differential Basic Equations of Differential Basic Equations of Differential Basic Equations of Differential 
Geometric Curved SegmentsGeometric Curved SegmentsGeometric Curved SegmentsGeometric Curved Segments
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Node RedistributionNode RedistributionNode RedistributionNode Redistribution
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Formation and Breakup of aFormation and Breakup of aFormation and Breakup of aFormation and Breakup of a
JunctionJunctionJunctionJunction
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Large-Scale Simulation-2
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Animation of Large-Scale 
Simulation

Shortcut to dynamic_deformation.lnk
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• Isolate and properly integrate multiscale parts - and determine what controls 
observables

Microconstitutive

dislocation-obstacle
interactions and

processes controlling 
local σcrss(εlocal)

Continuum Mechanics

large geometry-change 
deformation and load-

instability-necking

Micromechanics

deformation patterns 
and localization-

depend on σ, σ-state 
redistribution

triaxial 
stresssoftening

hardening

net

σcrss

nd∆x - εlocal

DeconvolutingDeconvolutingDeconvolutingDeconvoluting Localization LocalizationLocalizationLocalization
EffectsEffectsEffectsEffects
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Mechanisms of Dislocation Unlocking Mechanisms of Dislocation Unlocking Mechanisms of Dislocation Unlocking Mechanisms of Dislocation Unlocking 
from Cluster Atmospheresfrom Cluster Atmospheresfrom Cluster Atmospheresfrom Cluster Atmospheres
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Symmetric Unlocking InstabilitySymmetric Unlocking InstabilitySymmetric Unlocking InstabilitySymmetric Unlocking Instability
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Flow Stress Scaling for Dislocation Flow Stress Scaling for Dislocation Flow Stress Scaling for Dislocation Flow Stress Scaling for Dislocation 
Unlocking from Cluster AtmospheresUnlocking from Cluster AtmospheresUnlocking from Cluster AtmospheresUnlocking from Cluster Atmospheres
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Applications to Flow Localization Applications to Flow Localization Applications to Flow Localization Applications to Flow Localization 
in Irradiated Copperin Irradiated Copperin Irradiated Copperin Irradiated Copper
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Evolution of Dislocation ChannelsEvolution of Dislocation ChannelsEvolution of Dislocation ChannelsEvolution of Dislocation Channels
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Comparison between Simulations and Comparison between Simulations and Comparison between Simulations and Comparison between Simulations and 
Experiment on Radiation Hardening in CuExperiment on Radiation Hardening in CuExperiment on Radiation Hardening in CuExperiment on Radiation Hardening in Cu
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Comparison between Simulations Comparison between Simulations Comparison between Simulations Comparison between Simulations 
and Experiment on Flow Localizationand Experiment on Flow Localizationand Experiment on Flow Localizationand Experiment on Flow Localization

Computer Simulation
Experiment
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Simulation of Dislocation Channels Simulation of Dislocation Channels Simulation of Dislocation Channels Simulation of Dislocation Channels 
by Crossby Crossby Crossby Cross----slip �WSUslip �WSUslip �WSUslip �WSU----LLNL�LLNL�LLNL�LLNL�

Simulation of Dislocation Channels Simulation of Dislocation Channels Simulation of Dislocation Channels Simulation of Dislocation Channels 
by Crossby Crossby Crossby Cross----slip �WSUslip �WSUslip �WSUslip �WSU----LLNL�LLNL�LLNL�LLNL�
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Evolution of Dislocation Channels in Fe Evolution of Dislocation Channels in Fe Evolution of Dislocation Channels in Fe Evolution of Dislocation Channels in Fe 
Single FRSingle FRSingle FRSingle FR----sourcesourcesourcesource
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Dislocation glide results in destruction of micro-voids and climb

Evolution of Dislocation Channels in Fe Evolution of Dislocation Channels in Fe Evolution of Dislocation Channels in Fe Evolution of Dislocation Channels in Fe 
Multiple FRMultiple FRMultiple FRMultiple FR----sourcessourcessourcessources
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Evolution of Dislocation Evolution of Dislocation Evolution of Dislocation Evolution of Dislocation 
Channels in Fe Channels in Fe Channels in Fe Channels in Fe ���� Animation Animation Animation Animation 
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Comparison between Simulations and Comparison between Simulations and Comparison between Simulations and Comparison between Simulations and 
Experiment on Radiation Hardening in FeExperiment on Radiation Hardening in FeExperiment on Radiation Hardening in FeExperiment on Radiation Hardening in Fe----1111
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Comparison between Simulations and Comparison between Simulations and Comparison between Simulations and Comparison between Simulations and 
Experiment on Radiation Hardening in FeExperiment on Radiation Hardening in FeExperiment on Radiation Hardening in FeExperiment on Radiation Hardening in Fe----2222
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• The σσσσ*(T) ≈ CgKma(T)/√dp -- postulate that Kma(T) controlled by 
dynamic microcrack tip dislocation processes inherent to Peierl�s
stress of a bcc lattice
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• Measure Ka in oriented (100)[010] Fe single xtals using special 
composite specimens in compression anvil fixture.

• 5 tests to date at -198°C Ka = 3.7±1.7 MPa√m
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• Modify Gerberich (super) dislocation shielding model to account for 
higher Peierl�s stress under dynamic microcrack loading  conditions.

0

2.5

5

7.5

10

K
m

ic
ro

 (M
Pa

¦m
)

0 50 100 150 200 250 300

T' (°K)

Exp. fit

Gerberich model + 3.2

Running microcrack

Shielding by array of 
superdislocations limited 
by velocity dependent lattice 
mobility.

(5.0)

0.0

5.0

10.0

15.0

20.0

0 0.002 0.004 0.006 0.008 0.01

1/TBDT( °K-1)

Gerberich Si-Fe

500

Q = 18.6 kJ/m

dK/dt = 105-106MPa¦m/s

250

ModelingModelingModelingModeling KKKKmamamama(T)(T)(T)(T)



8/21/2001 34

� Dislocation Dynamics (DD) is shown to be a very useful tool for 
accurate simulation of mesoscopic plastic deformation of irradiated 
materials.

� Detailed conditions for the majority of dislocation interactions have 
been worked out (e.g. dipoles, junctions, cluster interaction, etc.).

� New mechanisms for dislocation unlocking from cluster atmospheres 
are uncovered.

� The basic mechanism of flow localization in irradiated materials is 
demonstrated by computer simulations.

� Good agreement between simulations and experiment on hardening.
� Future Research:

� DBTT in unirradiated and irradiated Fe and V.
� Effects of alloying on plastic flow localization.
� Coupling between mesoscopic DD and macroscopic FEM.

Conclusions and Future Conclusions and Future Conclusions and Future Conclusions and Future 
DirectionsDirectionsDirectionsDirections


