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» Mechanisms of plastic instabilities

» Plastic flow localization in irradiated materials
» Mesoscopic computer simulations & DD

» Dislocation interaction with defect clusters

» Radiation hardening & embrittlement by flow
localization

»> Application to flow localization of irradiated
copper and iron

» Fracture Toughness models
» Conclusions and future directions



SUMMARY
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Title of Work: Plasticity and Fracture Mechanisms of Fusion Materials

Principal Investigator and Institution: Nasr M. Ghoniem (UCLA), Hussein
Zbib (WSU), Brian Wirth (LLNL), G.R. Odette (UCSB), D. Edwards
(PNNL), S. Zinkle (ORNL)

Overall Objective: Computer Modeling and mechanistic experiments of the
main phenomena involved in plastic flow localization and associated
fracture instabilities under irradiation.

Technical Approach: (1) Dislocation Dynamics Modeling; (2) Experimental Data
Assessment; (3) Mechanisms of failure models; (4) mechanistic experiments.

Accomplishments:

Established the main mechanisms of dislocation-defect interactions;

Developed new computational tools for simulations of plastic flow;

Established the main mechanism of plastic flow localization.

Coordinated effort with the experimental program.

Relevance to OFES/Fusion: Mechanistic understanding of flow and fracture is
essential to successful alloy development.




Technological Motivation Behind
Mesoscale Simulations
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(1) Exposure of pressure vessel steels in nuclear fission reactors
leads to severe embrittlement affecting safety and economics.

(2) Irradiated metals in future fusion energy sources undergo plastic
flow localization instabilities.
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Deformation Behavior in As-irradiated
and Post-irradiation Annealed Pure Cu
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Fure Copper AR s Post-Irradiation Annealed Condition

= Dvislocation cell structure: material deforms
homogeneously at .01 dpa

« Mixture of channeling and homogeneous
deformation at 0.3 dpa
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* Cleared channels with little to no dslocation movement
hetween the channels: localized deformation
# Large increases in strengih (6 to 8x)
= Loss of uniform elongation and work hardening capaciiy
* Formation of a clearly defined vield point

U.S. Department of Energy
Pacific Northwest National Laboratory
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Mechanisms of Plastic
Instabilities
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Basic Equations of Differential
Geometric Curved Segments

Differential Geometry
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Basic Equations of Differential
Geometric Curved Segments
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Equations of Motion

J;_(f,f —BVk)é'rk‘dS‘ =0

Define: p=l = S ;= Mt
a Ha B

Final Equation of Motion

aQ
dt’

K Q=[P,T,P,T,]

=F
Q=Nodal coordinate vector

F=Nodal Forces
K=Mobility Matrix



Node Redistribution
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Formation and Breakup of
Mixed Short Dipoles
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Formation and Breakup of a
Junction
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Animation of Large-Scale
Simulation
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Deconvoluting Localization

Effects

8/21/2001

Isolate and properly integrate multiscale parts - and determine what controls

observables
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Single Slip Deformation - WSU -
funded by ASCI/ LLNL,

Elasto-plastic FEM DD Modeling of Localized
Deformation Microshear bands
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Multiple Slip Deformation
“WSU-LLNL
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Mechanisms of Dislocation Unlocking
from Cluster Atmospheres
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Symmetric Unlocking Instability
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Flow Stress Scaling for Dislocation
Unlocking from Cluster Atmospheres
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Stress-Strain Diagram in Pd
“WSU-LLNL”
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Applications to Flow Localization
in Irradiated Copper
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Evolution of Dislocation Channels
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Comparison between Simulations and
Experiment on Radiation Hardening in Cu
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Comparison between Simulations
and Experiment on Flow Localization

8/21/2001

Computer Simulation

Experiment
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Simulation of Dislocation Channels
by Cross-slip “WSU-LLNL?”
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Evolution of Dislocation Channels in Fe
Single FR-source




Evolution of Dislocation Channels in Fe
Multiple FR-sources
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Dislocation glide results in destruction of micro-voids and climb
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Evolution of Dislocation
Channels in Fe - Animation
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Comparison between Simulations and
Experiment on Radiation Hardening in Fe-1
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Comparison between Simulations and
Experiment on Radiation Hardening in Fe-2
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K, .(T)
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Experiments to Measure K__(T)

* Measure K, in oriented (100)[010] Fe single xtals using special
composite specimens in compression anvil fixture.

* 5 tests to date at -198°C K, = 3.7+1.7 MPaVm
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Modeling K__(T)

* Modifty Gerberich (super) dislocation shielding model to account for
higher Peierl’s stress under dynamic microcrack loading conditions.
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Conclusions and Future
Directions
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Dislocation Dynamics (DD) is shown to be a very useful tool for
accurate simulation of mesoscopic plastic deformation of irradiated
materials.

Detailed conditions for the majority of dislocation interactions have
been worked out (e.g. dipoles, junctions, cluster interaction, etc.).

New mechanisms for dislocation unlocking from cluster atmospheres
are uncovered.

The basic mechanism of flow localization in irradiated materials is
demonstrated by computer simulations.

Good agreement between simulations and experiment on hardening.
Future Research:

 DBTT in unirradiated and irradiated Fe and V.
U Effects of alloying on plastic flow localization.
O Coupling between mesoscopic DD and macroscopic FEM.
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